欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2007, Vol. 37 ›› Issue (10): 110-112.

• 机电与自动化 • 上一篇    下一篇

RBF网络在地质样品元素含量预测中的应用

闫玉生,庹先国,杨雪梅,穆克亮,李哲   

  1. 成都理工大学
  • 出版日期:2007-10-15 发布日期:2012-02-28
  • 基金资助:

    * 国家自然科学基金项目(编号:40574059)。

Application of RBF Network in Forecast of Element Contents in Geological Samples

Yan Yusheng,Tuo Xianguo,Yang Xuemei,Mu Keliang,Li Zhe   

  1. Chengdu University of Science and technology
  • Online:2007-10-15 Published:2012-02-28

摘要: 人工神经网络具有自组织、自学习、非线性逼近能力,其中的径向基函数(RBF)网络是以函数逼近理论为基础而构造的一类前向网络,这类网络的学习等价于在高维空间中寻找训练数据的最佳拟合平面。对攀枝花已知地质样品的X射线荧光计数数据进行归一化,并用自组织神经网络进行分类后,采用RBF网络的OLS算法预测攀枝花未知地质样品的Ti元素含量,预测数据与化学分析数据的相对误差均小于0.5%,结果比较理想。

关键词: RBF网络, OLS算法, 地质样品, 元素含量, 预测

Abstract: Artificial neural network has self-organization, self-study and non-linear approaching ability, of which RBF (Radial Basis Function) network is a kind of forward network constructed on the basis of function approximation theory. The study of this kind of network equals searching for the optimal fit plane for the training data in high dimensional space. The X ray florescent counting data of Panzhihua certified geological samples are normalized and classified by suing self-organization neural network. OLS algorithm of RBF network is adopted to forecast the Ti element content in the Panzhihua uncertified geological samples and the relative error between the forecast data and those of the chemical analysis is all smaller than 0.5%, an ideal result.

Key words: RBR network, OLS algorithm, Geological sample, Forecast