金属矿山 ›› 2016, Vol. 45 ›› Issue (08): 170-173.
崔一1,杨勇辉2
Cui Yi1,Yang Yonghui2
摘要: 由于经典RBF神经网络中的隐含层节点数、连接权值等结构参数基本由经验获取,因此经典RBF神经网络模型的性能取决于建立模型专家的主观性,存在一定的盲目性和随机性,难以对巷道变形进行准确预测。为此,采用贝叶斯阴阳和谐学习算法对经典RBF神经网络模型的隐含层节点个数、连接权值等结构参数进行了优化,提出了一种基于改进RBF神经网络的巷道变形预测模型,即对角型广义RBF神经网络模型。采用潞安和兖州矿区的综放回采巷道的现场长期监测数据分别对经典RBF神经网络模型以及对角型广义RBF神经网络模型进行了试验分析,结果显示:①对巷道顶底板变形进行预测时,对角型广义RBF神经网络模型的准确率约92.2%,经典RBF神经网络模型的准确率约80.6%;②对煤帮变形进行预测时,对角型广义RBF神经网络模型的准确率约90.2%,经典RBF神经网络模型的准确率约78.6%。上述试验结果表明,对角型广义RBF神经网络模型对于巷道变形预测的精度明显优于经典RBF神经网络模型,对于高精度巷道变形预测有一定的参考价值。