欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2016, Vol. 45 ›› Issue (11): 34-38.

• 采矿工程 • 上一篇    下一篇

充填体强度的支持向量机设计匹配模型

王志军1,2,吕文生1,2,杨鹏1,3,王志凯1,2,王金海4   

  1. 1.北京科技大学土木与环境工程学院,北京 100083;2.金属矿山高效开采与安全教育部重点实验室,北京 100083;3.北京联合大学机器人学院,北京 100101;4.北方爆破科技有限公司,北京 100089
  • 出版日期:2016-11-15 发布日期:2017-02-15
  • 基金资助:

    基金项目:“十二五”国家科技支撑计划项目(编号:2012BAB08B01)。

Matching Model of Backfill Strength Design on Support Vector Machines

Wang Zhijun1,2,Lu Wensheng1,2,Yang Peng1,3,Wang Zhikai1,2,Wang Jinhai4   

  1. 1.School of Civil and Environmental Engineering,Beijing University of Science and Technology,Beijing 100083,China;2.Key Laboratory of High-efficient Mining and safety of Metal Mines,Ministry of Education,Beijing 100083,China;3.College of Robots,Beijing Union University,Beijing 100101,China;4.North Blasting Technology Co.,Ltd.,Beijing 100089,China
  • Online:2016-11-15 Published:2017-02-15

摘要: 充填体强度设计的预测受到多种高维度、非线性、随机性因素的影响。为改善当前充填体强度设计预测效果不佳的现状,使用支持向量机(SVM)方法在matlab软件中借助LibSVM工具箱建立充填体强度设计匹配模型。分析并筛选出8个主要因素作为条件属性,充填体强度作为决策属性,并挑选出72组训练样本和6组校验样本。模型选择径向基函数(RBF)为核函数,采用网格搜索法对参数寻优,再通过交叉验证检验最优参数组合。结果表明:SVM匹配模型做出的回归预测平均误差为1.94%,校验预测平均误差为2.23%,相对于BP神经网络模型,预测准确度更高。在保证采场稳定性的前提下,SVM匹配模型更为有效地减少水泥消耗、降低充填成本,提高企业经济效益。

关键词: 胶结充填, 充填体强度, 支持向量机, BP神经网络, 预测模型

Abstract: The forecast of backfill strength design can be influenced by many factors,such as high-dimensional parameters,nonlinear and random elements.In order to improve the current status of the poor prediction effect of backfill strength design,the support vector machines was adopted to establish a backfill strength design matching model with LibSVM toolbox in Matlab software.In this paper,eight major factors have been selected as condition attribute,backfill strength as decision attribute,as well as 72 sets of training samples and 6 sets of check samples are determined.With radial basis function (RBF) as its kernel function,parameters are optimized by grid search method,and the optimal parameter combination is tested through cross-validation method.The results show that:the average deviation of regression forecast and calibration made by SVM model are 1.94% and 2.23% respectively,which are of higher accuracy than the BP neural network.On the premise of ensuring the stope stability,the model based on SVM can effectively reduce cement consumption,lower backfill costs,and therefore improve economic benefits of enterprises.

Key words: Cemented tailings backfill, Backfill strength, Support vector machines, BP neural network, Prediction model