欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2017, Vol. 46 ›› Issue (06): 137-142.

• 机电与自动化 • 上一篇    下一篇

基于梯度空间二值纹理化描述子的矿山井筒视频图像匹配

邢远秀1,2   

  1. 1.武汉科技大学理学院,湖北 武汉 430081;2.冶金工业过程系统科学湖北省重点实验室,湖北 武汉 430081
  • 出版日期:2017-06-15 发布日期:2017-09-27
  • 基金资助:

    湖北省自然科学基金项目(编号:2015CFB602),冶金工业过程系统科学湖北省重点实验室项目(编号:Y201413)。

Mineshaft Video Images Matching Based on Gradient Space and Binary Texture Descriptor

Xing Yuanxiu1,2   

  1. 1.College of Science,Wuhan University of Science and Technology,Wuhan 430081,China;2.Hubei Province Key Laboratory of Systems Science in Metallurgical Process,Wuhan 430081,China
  • Online:2017-06-15 Published:2017-09-27

摘要: 针对传统匹配算法在低质量的矿山井筒视频图像匹配时匹配精度和效率低问题,提出基于梯度空间纹理化描述子的匹配算法。该算法快速检测特征点和特征点邻域状态,并将二值纹理和方向梯度直方图相结合构建特征描述子,提高描述子的区分度,然后根据特征点状态分类,在类内采用2种不同的匹配策略大幅提高算法的执行效率。试验结果验证,该算法能有效解决图像模糊、光照变化、低对比度和图像变形问题,对低质量的矿山井筒视频图像具有较好的匹配效果。

关键词: 矿山井筒图像匹配, 特征邻域状态, 特征描述子, 相似性度量

Abstract: In order to increase the accuracy and efficiency of image matching for low quality mineshaft video images,a new match algorithm based on gradient space and binary texture is proposed.Firstly,in case of improving accuracy,the feature points and their neighborhood status are quickly examined,the binary texture features and statistical features are combined to construct a rotation-invariant binary texture and oriented gradient histogram (RBT-OGH) descriptor;secondly,according to the classification status of the feature points,and two different matching strategies are used for image matching to improve the working efficiency of the algorithm proposed in this paper.The test results show that the problems of image blurring,illumination variation,low constrast and image deformation existed in the mainshaft video images,therefore,it can be applied to conduct mineshaft video images matching with high efficiency.

Key words: Mainshaft image matching, Feature neighborhood status, Feature descriptor, Similarity measurement