欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2019, Vol. 48 ›› Issue (08): 179-184.

• 安全与环保 • 上一篇    下一篇

基于逻辑回归-聚类算法的采空区危险等级评价模型

黄新典1,褚夫蛟2   

  1. 1. 中共贵州省委党校应急管理培训部,贵州 贵阳 550028;2. 山东理工大学资源与环境工程学院,山东 淄博 255000
  • 出版日期:2019-08-15 发布日期:2019-10-10
  • 基金资助:

    基金项目:山东省重点研发计划项目(编号:2017CXGC1604)。

Risk Grade Evaluation Model of Goaf Based on Logical Regression and Clustering Algorithm

Huang Xindian1,Chu Fujiao2   

  1. 1. Department of Emergency Management,Party School of the Guizhou Provincial Committee of the Communist Party of China,Guiyang 550028,China; 2.School of Resources and Environment Engineering,Shandong University of Technology,Zibo 255000,China
  • Online:2019-08-15 Published:2019-10-10

摘要: 采空区危险性分级研究在矿山灾害防治和风险管理中具有重要意义。为克服传统采空区危险性评价指标繁多、计算复杂等问题,提出了一种采空区危险等级快速评价模型。基于110个采空区样本,将随机森林算法(Random Forest, RF)与递归特征消除理论(Recursive feature elimination, RFE)相结合,筛选出对采空区危险性分级信息量贡献较大的指标,克服传统评价指标繁多且不易获取的缺陷,实现采空区评价指标体系精简降维。基于逻辑回归理论得到采空区危险性概率模型,并应用K-means快速聚类算法求得采空区危险性概率的4个聚类中心点,耦合2种算法构建了采空区危险等级快速分级模型,以克服传统采空区危险性评价方法计算复杂、普适性差的缺陷。为验证该评价模型的有效性,基于混淆矩阵对评价模型的准确性进行了验证分析。研究表明:①RQD值、矿柱尺寸布置、岩体结构、采空区高度、地质构造、工程布置、地下可见水赋值为采空区分级评价中信息贡献量较大的指标;②模型分级准确率达到77.4%,第一类错误率降低至6.25%,危险采空区的预测准确率达到93.75%,评价结果可为采空区后续治理提供可靠依据。

关键词: 采空区, RF算法, RFE算法, 逻辑回归理论, K-means聚类

Abstract: The study on risk classification of goaf has important significance in mine disaster prevention and risk management.In order to overcome the problems of numerous indexes and complex calculation in traditional methods,a rapid grade evaluation model of goaf is proposed.Based on 110 goaf samples,combines random forest (RF) with recursive feature elimination (RFE) algorithm to select indicators that contribute most information in classification,which overcomes the shortcomings in traditional methods whose indicators which are numerous and difficult to obtain,realizes the dimension reduction of the evaluation index system of goaf.Based on logistic regression theory,the probability model of goaf risk is obtained,and four clustering centers of goaf risk probability are obtained by fast clustering algorithm,coupled with two algorithms,a fast grade evaluation model of goaf is constructed to overcome the shortcomings of complex calculation and poor universality in traditional methods.In order to verify the validity of the evaluation model,its accuracy was verified and analyzed based on confusion matrix.The study results show that:①RQD value,pillar size and layout,rock mass structure,goaf height,geological structure,engineering layout,groundwater are these indicators that contribute most information in goaf risk classification; ②the classification accuracy rate of the fast classification model constructed in this paper reaches 77.4%, the error rate of the first category is as low as 6.25%,and the accuracy rate of predicting dangerous goaf reaches 93.75%, the model can provide effective information for goaf management in actual production.

Key words: Goaf, RF algorithm, RFE algorithm, Logistic regression theory, K-means clustering