欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2021, Vol. 50 ›› Issue (09): 79-84.

• 矿物工程 • 上一篇    下一篇

山西某微细粒铁矿石选矿工艺流程优化试验

吴  红 王小玉刘  军 张  永3   

  1. 1. 安徽马钢张庄矿业有限责任公司,安徽 六安 237484;2. 安徽马钢罗河矿业有限责任公司,安徽 合肥 231562;3. 中钢集团马鞍山矿山研究总院股份有限公司,安徽 马鞍山 243000
  • 出版日期:2021-09-15 发布日期:2021-10-07
  • 基金资助:
    安徽省重点研究与开发计划面上攻关项目(编号:1804a0802212)

Optimization Test of Beneficiation Process for a Certain Fine-grained Iron Ore in Shanxi

WU Hong1    WANG Xiaoyu   LIU Jun3    ZHANG Yong3   

  1. 1. Anhui Masteel Zhangzhuang Mining Co., Ltd., Lu'an 237484, China; 2. Anhui Masteel Luohe Mining Co., Ltd., Hefei 231562, China; 3. Sinosteel Maanshan General Institute of Mining Research Co., Ltd., Maanshan 243000, China
  • Online:2021-09-15 Published:2021-10-07

摘要: 山西某微细粒铁矿石选矿厂原采用阶段磨矿—弱磁选—强磁选—阴离子反浮选工艺流程,生产中存在强磁选尾矿铁品位偏高、浮选指标不理想等问题。因此,通过一段强磁选磁场强度优化、弱磁选—强磁选替代絮凝脱泥等方法优化工艺流程。结果表明:①针对铁品位30.60%的试样,在磨矿细度为-0.076 mm占85%的条件下,采用一段弱磁选(143 kA/m)、强磁选(1 114 kA/m)工艺流程,可使强磁选尾矿铁品位降至6.18%,此时铁回收率损失仅为4.82%。②以二段弱磁选—强磁选流程替代原絮凝脱泥工艺,在二段磨矿细度为-0.038 mm占85%的条件下,二段弱磁选、强磁选磁场强度分别为143 kA/m、637 kA/m,浮选给矿铁品位由39.90%大幅提高至48.36%,浮选给矿中-10 μm粒级含量由27.22%降低至22.19%,-20 μm粒级含量由48.79%降低至44.21%。③对二段弱磁选+强磁选混合精矿采用“1粗1精3扫”闭路浮选流程,在1次粗选浮选浓度为25%、温度为30 ℃的条件下,依次添加NaOH 1 200 g/t、淀粉1 000 g/t、CaO 500 g/t,RA-915粗选、精选用量分别为900 g/t、150 g/t,最终可获得铁品位66.13%、铁回收率88.44%的浮选铁精矿,此时浮选尾矿铁品位为15.83%。优化后的试验流程降低了强磁选尾矿铁品位,同时提高了浮选给矿的铁品位,降低了浮选提质降杂难度,对同类型的铁矿石开发利用具有借鉴意义。 关键词 微细粒|铁矿石|高梯度强磁选|阴离子反浮选

关键词: 微细粒, 铁矿石, 高梯度强磁选, 阴离子反浮选

Abstract: The process flow of stage grinding, low intensity magnetic separation, high intensity magnetic separation and anion reverse flotation was originally adopted in a certain fine-grained iron ore concentrator in Shanxi. However, problems existed in the practical production, such as high iron grade of tailings from high intensity magnetic separation and unsatisfactory flotation indexes.Therefore, the technological process was optimized by optimizing the magnetic field intensity of the first stage of high intensity magnetic separation, replacing flocculation and desliming with low intensity magnetic separation and high intensity magnetic separation.The results showed that:① For the sample with the iron grade of 30.60%, under the condition of grinding fineness of -0.076 mm accounting for 85%, using the first stage of low intensity magnetic separation (143 kA/m) and high intensity magnetic separation (1 114 kA/m) process flow, the iron grade of tailings from high intensity magnetic separation can be reduced to 6.18%.At this time, the loss of iron recovery rate is only 4.82%.② The second-stage low intensity magnetic separation and high intensity magnetic separation process is used to replace the original flocculation desliming process. Under the condition of the second-stage grinding fineness of -0.038 mm accounting for 85%, the magnetic field intensity of the second-stage low intensity magnetic separation and high intensity magnetic separation are 143 kA/m and 637 kA/m, respectively, the particle size contents of the second-stage of high intensity magnetic separation concentrate which below 10 μm decreases from 27.22% to 22.19%. The particle size contents below 20 μm decreased from 48.79% to 44.21%, and the iron grade of flotation feeding increased from 39.90% to 48.36%.③ The closed-circuit flotation process of "one roughing, one cleaning and three scavging" was adopted for the second stage low intensity magnetic separation and high intensity magnetic separation combined concentrate . Under the condition of one roughing flotation concentration of 25% and the temperature of 30 ℃,NaOH dosage of 1 200 g/t, starch dosage of 1 000 g/t and CaO dosage of 500 g/t were successively added.The roughing and cleaning dosage of RA-915 were 900 g/t and 150 g/t, respectively. The flotation iron concentrate with iron grade of 66.13% and iron recovery rate of 88.44% was finally obtained, and the iron grade of flotation tailings was 15.83%.The optimized test process can reduce the iron grade of tailings from high intensity magnetic separation, improve the iron grade of flotation feeding ore, and reduce the difficulty of flotation quality improvement and impurity reduction. It has a reference significance for the development and utilization of the same type of iron ore.

Key words: fine particle size, iron ores, strong magnetic separation with high gradient, anion reverse flotation