欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2023, Vol. 52 ›› Issue (05): 202-212.

• “矿业青年科学家”专题 • 上一篇    下一篇

基于灰色关联分析和 SSA-RF 模型的岩爆等级预测

满 轲1武立文1 刘晓丽2 宋志飞1 柳宗旭1 刘汭琳1 曹子祥1
  

  1. 1. 北方工业大学土木工程学院,北京 100144;2. 清华大学水沙科学与水利水电工程国家重点实验室,北京 100084
  • 出版日期:2023-05-15 发布日期:2023-06-15
  • 基金资助:
    “十三五”国家重点研发计划项目(编号:2018YFC1504801,2018YFC1504902);国家自然科学基金项目(编号:51522903,51774184);清 华大学水沙科学与水利水电工程国家重点实验室项目(编号:2019-KY-03);北方工业大学毓杰项目(编号:216051360020XN199 / 006);北方工业大学城市地下空间智能建造关键技术项目( 编号:110051360022XN108-19);北方工业大学科研启动基金项目( 编号: 110051360002)。

Rockburst Grade Prediction Based on Grey Correlation Analysis and SSA-RF Model

MAN Ke1 WU Liwen1 LIU Xiaoli2 SONG Zhifei1 LIU Zongxu1 LIU Ruilin1 CAO Zixiang1 #br#   

  1. 1. College of Civil Engineering,North China University of Technology,Beijing 100144,China;2. State Key Laboratory of Hydroscience and Hydraulic Engineering,Tsinghua University,Beijing 100084,China
  • Online:2023-05-15 Published:2023-06-15

摘要: 矿山巷道、交通隧道等工程中岩爆灾害频发,岩爆预测变得尤为重要。 为了提高岩爆等级的预测准确 率和预测模型泛化性,提出了一种采用麻雀搜索算法(SSA)优化随机森林算法(RF)模型的 SSA-RF 模型。 考虑岩爆 等级预测指标的合理性,综合岩爆成因特点并根据灰色关联分析结果进行 4 组方案比选以确定最佳预测指标组合,采 用模型的重要度分析验证最佳预测指标组合的合理性。 方案一保留全部预测指标作为对比项,方案二筛除与岩爆等 级之间灰色关联度较低的两项预测指标,方案三采用复合指标,方案四采用独立指标。 搜集了 151 个岩爆样本数据作 为模型数据集,将 SSA-RF 模型的预测效果与其他 7 种预测方法进行比较,并分析了不同样本容量的模型敏感性。 结 果表明:方案二为最佳方案,最佳预测指标组合为围岩切向应力、应力系数、弹性能指数和单轴抗压强度;相比于其他 7 种预测方法,SSA-RF 模型在 4 组方案中预测准确率均最高且平均准确率达到 88. 09%,在最佳方案中甚至达到 95. 23%;SSA-RF 模型的预测指标重要度排序较 RF 模型更合理并有效验证了最佳预测指标组合的合理性;采用 SSA 优 化 RF 模型可以提高 RF 模型对不同岩爆样本容量的预测准确率和泛化性,有效弥补了 RF 模型随机性的不足。 综上 可知,SSA-RF 模型对于实际工程的岩爆等级预测具有可行性和有效性。

关键词: 岩爆等级预测, 灰色关联分析, SSA-RF 模型, 模型重要度分析, 模型敏感性分析

Abstract: Rockburst disasters occur frequently in mine roadways,traffic tunnels and other projects,and rockburst prediction has become particularly important. In order to improve the prediction accuracy of rockburst grade and the generalization of prediction model,an SSA-RF model using sparrow search algorithm (SSA) to optimize the random forest algorithm (RF) model was proposed. Considering the rationality of the rockburst grade prediction indicators,the four sets of schemes were selected based on the characteristics of rockburst genesis and the grey correlation analysis results to determine the best combination of prediction indicators,and the importance analysis of model was used to verify the rationality of the best combination of prediction indicators. The first scheme retained all the prediction indicators as a comparison item,the second scheme sieved out the two prediction indicators of low grey correlation with rockburst grade,the third scheme adopted composite indicators,and the fourth scheme adopted independent indicators. A total of 151 rockburst sample data were collected as model datasets,the prediction effect of SSA-RF model was compared with seven other prediction methods,and the sensitivity analysis of model for different sample sizes was analyzed. The results show that the second scheme is the best one,and the best combination of prediction indicators is tangential stress in surrounding rock, stress coefficient, elastic energy index and uniaxial compressive strength. Compared with the other seven prediction methods,the SSA-RF model has the highest prediction accuracy and the average accuracy reaches 88. 09% in the four sets of schemes,and even reaches 95. 23% in the best scheme. The prediction indicators of SSA-RF model are more reasonable in importance ranking than that of RF model,and effectively verify the rationality of the best combination of prediction indicators. The use of SSA algorithm to optimize the RF model can improve the prediction accuracy and generalization of the RF model for different rockburst sample volumes,and effectively compensate for the shortcomings of the randomness of the RF model. In summary,it can be seen that the SSA-RF model is feasible and effective for predicting the rockburst grade of actual engineering.

Key words: rockburst grade prediction,grey correlation analysis,SSA-RF model,importance analysis of model,sensitivity analysis of model