欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2023, Vol. 52 ›› Issue (07): 185-191.

• 采矿工程 • 上一篇    下一篇

基于改进能量极值法的微震信号与爆破信号识别方法

倪 彬1 张 伟1 刘晓明2 汪 朝3
  

  1. 1. 中国有色金属工业西安勘察设计研究院有限公司,陕西 西安 710001;2. 深圳市中金岭南有色金属股份有限公司,广东 深圳 518000;3. 西安建筑科技大学资源工程学院,陕西 西安 710055
  • 出版日期:2023-07-15 发布日期:2023-09-05
  • 基金资助:
    陕西省自然科学基础研究计划项目(编号:2022JQ-349)。

Identification Method of Microseismic Signal and Blasting Signal Based on Improved Energy Extremum Approach

NI Bin1ZHANG Wei1LIU Xiaoming2WANG Zhao3 #br#   

  1. 1. China Nonferrous Metal Industry Xi′an Survey Design and Research Institute Co. ,Ltd. ,Xi′an 710001,China;2. Shenzhen Zhongjin Lingnan Non-ferrous Metal Co. ,Ltd. ,Shenzhen 518000,China;3. School of Resources Engineering,Xi′an University of Architecture and Technology,Xi′an 710055,China
  • Online:2023-07-15 Published:2023-09-05

摘要: 微震监测是深部矿山安全、高效开采的一种重要的辅助手段。 然而,井下布设的监测台网实时采集的 数据包括微震信号、爆破信号、钻机、矿车机械设备噪声等,人工手动对不同信号进行分类不仅耗时耗力、效率低且主 观性强,对后续微震信号到时拾取及微震事件定位分析造成了极大干扰。 以国内某铜矿微震监测系统采集的信号为 研究对象,基于能量极值法(Energy Extreme Value,EEV),通过计算移动时窗区间内的信号能量 Ratio 曲线,统计曲线 上极值点起始时间到结束时间的总时长以及能量 Ratio 曲线上波峰数,提出了一种微震信号与爆破信号自动识别方 法。 采用 MATLAB 软件对该铜矿现场采集的数据进行了分析处理,结果表明:该方法能精确识别微震信号、采场爆破 信号、巷道掘进爆破信号,对连续 3 个月采集的信号识别准确率分别为 90. 7%、91. 8%、95. 2%。 该研究成果为微震信 号处理提供了一种新的方法,具有一定的工程应用价值。

关键词: 微震监测, 微震信号, 爆破信号, 信号分类, MATLAB

Abstract: Microseismic monitoring is an important auxiliary tool for safety and high efficiency mining at depth. However, the real-time data collected by the underground monitoring station network includes microseismic signals,blasting signals,drilling rigs,mine car machinery and equipment noise,and so on. Manual classification of different signals is not only time-consuming,labor-intensive,inefficient and subjective,but also causes great interference to the subsequent microseismic signal pickup and microseismic event location analysis. The signals collected by the microseismic monitoring system in a copper mine were used as the research object,firstly,the signal energy ratio curve within the moving time window was calculated based on the energy extremum method (EEV),and then the number of extremum points on energy ratio curve of different signals,the duration,and the duration between the extremum points and each other were selected as the main three indexes,finally,an automatic identification method of microseismic signals and blasting signals based on the above indexes was developed. MATLAB software was used to analyze and process the data collected at the copper mine,and the results showed that the method can accurately identify microseismic signals,quarry blast signals,excavation blast signals,the recognition accuracy of the signals collected for three consecutive months was 90. 7%,91. 8% and 95. 2%,respectively. The method proposed in this paper could be considered as an alternative tool for microseismic signal processing and has good engineering application value.

Key words: microseismic monitoring,microseismic signals,blast signals,signal classification,MATLAB