欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2023, Vol. 52 ›› Issue (09): 187-192.

• 机电与自动化 • 上一篇    下一篇

基于无线射频识别技术的矿工定位算法研究

方跃春1 王 洪2
  

  1. 1. 长沙民政职业技术学院电子信息工程学院,湖南 长沙 410004;2. 湖南师范大学工程与设计学院,湖南 长沙 410081
  • 出版日期:2023-09-15 发布日期:2023-11-03
  • 基金资助:
    长沙民政职业技术学院“双高校”建设课题(编号:HX2023046)。

Study on Miner Location Algorithm Based on Radio Frequency Identification Technology

FANG Yuechun1 WANG Hong2 #br#   

  1. 1. School of Electronic Information Engineering,Changsha Social Work College,Changsha 410004,China;2. College of Enginnering and Design,Hunan Normal University,Changsha 410081,China
  • Online:2023-09-15 Published:2023-11-03

摘要: 随着智能矿山技术的发展,越来越多的矿山开始采用自动化设备来取代人力操作,从而提高生产效率 和安全性。 针对矿工在矿井地下工作时容易遭遇波动信号影响导致定位准确性降低、误差增大等问题,提出了一种 基于无线射频识别技术的矿工定位算法。 首先,建立了一个基于接收信号强度指标的定位模型,并考虑到信号传播 中随机噪声的影响,采用 Log-Normal 信号传播模型和卡尔曼滤波算法对原始信号进行处理和优化。 其次,设计了一 种基于 K-Means 聚类算法的参考点优化方法,来选择合适的参考点,提高定位的准确性和稳定性。 试验表明:所提出 的算法与现有算法相比,在定位精度和鲁棒性方面均有显著提升。 该方法不仅可以提高矿工工作安全性和效率,还 可以为矿山安全监管和管理提供更精确和有效的手段。

关键词: 智能矿山, 矿工定位, 无线射频识别技术, K-Means 聚类

Abstract: With the development of smart mining technology,more and more mines have begun to use automated equipment to replace human operations,thereby improving production efficiency and safety. In order to reduce the accuracy and increase the error caused by fluctuating signals when miners work underground in the mine,a mine location algorithm based on radio frequency identification (RFID) technology is proposed. Firstly,a location model based on the received signal strength index is established,and considering the influence of random noise in signal propagation,Log-Normal signal propagation model and Kalman filter algorithm are used to process and optimize the original signal. Secondly,a reference point optimization method based on K-Means clustering algorithm is designed to select appropriate reference points and improve the accuracy and stability of positioning. Experiments show that the proposed algorithm has a significant improvement in positioning accuracy and robustness compared with existing algorithms. This method can not only improve the working safety and efficiency of miners,but also provide more accurate and effective means for mine safety supervision and management.

Key words: intelligent mine,miner location,radio frequency identification technology,K-Means clustering