欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2024, Vol. 53 ›› Issue (01): 158-164.

• “智能矿山建设与实践”专题 • 上一篇    下一篇

基于自适应CKF的改进LANDMARC井下定位算法研究

苗作华1,2 陈澳光1 朱良建1 赵成诚1 刘代文1
  

  1. 1. 武汉科技大学资源与环境工程学院,湖北 武汉 430081;2. 冶金矿产资源高效利用与造块湖北省重点实验室,湖北 武汉 430081
  • 出版日期:2024-01-15 发布日期:2024-04-21
  • 基金资助:
    国家自然科学基金项目(编号:41071242,41971237);教育部产学合作协同育人项目(编号:202102136008)。

Improved LANDMARC Downhole Positioning Algorithm Based on Adaptive CKF

MIAO Zuohua1,2 CHEN Aoguang1 ZHU Liangjian1 ZHAO Chengcheng1 LIU Daiwen1 #br#   

  1. 1. School of Resources and Environmental Engineering,Wuhan University of Science and Technology,Wuhan 430081,China;2. Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resource,Wuhan 430081,China
  • Online:2024-01-15 Published:2024-04-21

摘要: 在矿山井下进行人员定位时,为解决传统的 LANDMARC 算法受井下复杂环境影响出现的定位结果精 度不高、波动大的问题,提出了一种基于自适应容积卡尔曼滤波( Volumentric Kalman Filtering,CKF) 的改进 LANDMARC 井下定位算法。 首先,该算法结合传统的 LANDMARC 定位算法建立井下三维空间模型并求解目标位置状态 预估值;其次,利用 BP 神经网络的泛化映射能力,引入神经元参数对 CKF 算法进行优化,充分结合 BP 神经网络迭代 式学习和 CKF 在强非线性系统中保持稳定的特点,提高定位算法的自适应能力;最后,将位置状态预估值作为观测量 进行自适应 CKF 滤波处理,用优化后的结果作为目标位置坐标的真实值输出,提高了井下定位的精准性。 试验结果 表明:引入自适应 CKF 进行滤波处理可以大大提高传统 LANDMARC 定位算法的稳定性,定位偏差分布更为集中,偏 差在 1 m 以下的占 90%以上,所提算法的定位偏差在 0. 612 m 以下的标签达到 60%,可满足井下复杂动态环境的高稳 定性要求,与传统的 LANDMARC 定位算法和经由 HIF 滤波的 LANDMARC 定位算法相比应用于井下定位具有更好的 适用性。

关键词: 井下定位, 容积卡尔曼滤波, BP神经网络, LANDMARC, 智能矿山

Abstract: In order to solve the problem of low accuracy and large fluctuation of positioning results caused by the traditional LANDMARC algorithm due to the complex environmental environment of the mine,an improved LANDMARC underground positioning algorithm based on adaptive CKF is proposed. Firstly,the algorithm combines the traditional LANDMARC positioning algorithm to establish a downhole three-dimensional spatial model and solve the target location state estimation. Secondly,using the generalization mapping ability of BP neural network,neuronal parameters are introduced to optimize the volumetric Kalman filter (CKF),which fully combines the characteristics of BP neural network iterative learning and volumetric Kalman filter (CKF) to maintain stability in a strong nonlinear system,and improve the adaptive ability of the positioning algorithm. Finally,the location state estimation is used as an observation measurement for adaptive CKF filtering processing,and the optimized result is used as the true value output of the target location coordinates,which improves the accuracy of downhole positioning. The experimental results show that the introduction of adaptive CKF for filtering can greatly improve the stability of the traditional LANDMARC positioning algorithm,and the distribution of localization deviation is more concentrated,and the deviation below 1 m accounts for more than 90%. The positioning deviation of the proposed algorithm reaches 60% for labels below 0. 612 m,which can meet the high stability requirements of the complex dynamic environment of downhole,and has better applicability to downhole positioning compared with the traditional LANDMARC positioning algorithm and the LANDMARC positioning algorithm filtered by HIF.

Key words: downhole positioning,volumetric Kalman filtering,BP neural networks,LANDMARC,intelligent mine