欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2024, Vol. 53 ›› Issue (01): 174-181.

• “智能矿山建设与实践”专题 • 上一篇    下一篇

基于改进 MobileNet V3 的矿物智能识别模型

宛 鹤1 张金艳1 屈娟萍2 张崇辉1 薛季玮1 王 森1 卜显忠1
  

  1. 1. 西安建筑科技大学资源工程学院,陕西 西安 710055;2. 奥卢大学奥卢矿业学院,芬兰 奥卢 FI-9004
  • 出版日期:2024-01-15 发布日期:2024-04-21
  • 基金资助:
    国家自然科学基金项目(编号:52274271,52074206,52104266)。

Intelligent Recognition Model of Mineral Based on Improved MobileNet V3

WAN He1 ZHANG Jinyan1 QU Juanping2 ZHANG ChonghuiXUE Jiwei1 WANG Sen1 BU Xianzhong1 #br#   

  1. 1. School of Resource Engineering,Xi′an University of Architecture and Technology,Xi′an 710055,China;2. Oulu Mining School,University of Oulu,Oulu FI-90014,Finland
  • Online:2024-01-15 Published:2024-04-21

摘要: 针对当前矿物识别领域存在的精度不佳、适应性差、携带不便等问题,提出了一种基于改进 MobileNet V3 的矿物智能识别模型(CA-MobileNet V3)。 为获得研究所需的有效数据集,通过由 mindat. org 网站和自行拍摄方式 获取的矿物图像创建了一个包含 19 种矿物的数据集,对其进行数据增强处理,并按照 8 ∶1 ∶1 的比例划分为训练集、验 证集和测试集。 为提升模型对图像信息的特征提取能力,引入协调注意力机制,用以替代轻量型 MobileNet V3 模型的 原始 SE 注意力机制,以提高矿物识别准确率。 最后,采用迁移学习方法预训练 CA-MobileNet V3 模型,以加速模型收 敛、提高泛化能力、避免过拟合。 在训练过程中,将 CA-MobileNet V3 与 mobilenet v3、MobileNet V3、ShuffleNet V2、EfficientNet V2 等模型进行了性能比较。 结果表明:各迁移模型均展现出显著的收敛速度优势,而 CA-MobileNet V3 矿物 智能识别模型的 Top1-准确率、Top2-准确率、f1-score 值分别达到 93. 90%、98. 58%和 93. 89%,在所有模型中效果最佳, 且模型大小仅为 4. 61 MB,属于轻量化模型。 为验证模型有效性,t-SNE 可视化分析被用于不同模型的识别效果比较, 进一步印证了 CA-MobileNet V3 模型的优越性。

关键词: 矿物分类, 迁移学习, 轻量化模型, 协调注意力机制, t-SNE

Abstract: Challenges such as low accuracy,limited adaptability,and a lack of portability in the field of mineral recognition were addressed through the proposal of an intelligent mineral recognition model ( CA-MobileNet V3) based on the improved MobileNet. For research purposes,a collection of 19 minerals was compiled from images sourced from mindat. org and self-captured images. The images,following data enhancement procedures,were categorized into training,validation,and test sets in an 8 ∶1 ∶1 ratio. To enhance the feature extraction capabilities,the original SE attention mechanism in the lightweight MobileNet V3 model was replaced by the coordination attention mechanism. The aim of this alteration was to elevate mineral recognition accuracy. Subsequently,pre-training using transfer learning was employed on the CA-MobileNet V3 model to expedite convergence,enhance generalization,and mitigate overfitting. During training,a comparison of the performance of CA-MobileNet V3 was made with other models,including mobilenet v3,MobileNet V3,ShuffleNet V2,and EfficientNet V2. The results revealed notable advantages in terms of convergence speed for all transfer models. Particularly,the CA-MobileNet V3 model achieved TOP1-accuracy,TOP2-accuracy,and f1-score values of 93. 90%,98. 58%,and 93. 89%,respectively,showcasing superior performance compared to other models. Furthermore,this lightweight model boasted a compact size of only 4. 61 MB. To further validate the model′s effectiveness,t-SNE visual analysis was employed,providing a comparative assessment of the recognition effects among different models.

Key words: mineral classification,transfer learning,lightweight model,coordinate attention mechanism,t-SNE