欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2025, Vol. 54 ›› Issue (6): 188-194.

• 机电与自动化 • 上一篇    下一篇

基于神经网络的碎磨流程数学建模方法研究

姜志宏1,2   刘秋萍1    

  1. 1. 江西理工大学机电工程学院,江西 赣州 341000;2. 颗粒技术江西省重点实验室,江西 赣州 341000
  • 出版日期:2025-06-15 发布日期:2025-07-09
  • 通讯作者: 刘秋萍(2000—),女,硕士研究生。
  • 作者简介:姜志宏(1977—),男,副教授,博士,硕士研究生导师。
  • 基金资助:
    国家自然科学基金项目(编号:52364025)。 

Research on Mathematical Modeling Method of Crushing and Grinding Process Based on Neural Network

JIANG Zhihong 1,2   LIU Qiuping   

  1. 1. School of Mechanical and Electrical Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,China; 2. Jiangxi Provincial Key Laboratory of Particle Technology,Ganzhou 341000,China
  • Online:2025-06-15 Published:2025-07-09

摘要: 在选矿工艺中,碎磨流程是关键的物料准备阶段。 针对传统碎磨流程数学模型建模方法中未考虑设备 本征参数问题,在破碎阶段采用技术成熟的矩阵模型,同时利用神经网络的多特征融合能力,对磨矿流程中的设备结 构特征和给料粒级分布进行处理,建立神经网络-矩阵混合模型(Back Propagation-Matrix Model ,BP-MM)。 以碎磨制 样短流程为例,基于破碎实验数据构建颚式破碎机、对辊破碎机的矩阵模型,利用神经网络方法构建融合磨盘间隙参 数的盘式碎磨机 BP 神经网络模型,搭建碎磨制样短流程的 BP-MM 混合模型。 以平均绝对误差、均方根误差和决定 系数为评价指标,将 BP-MM 混合模型的预测结果与 JKSimmet 仿真结果进行对比。 结果表明,BP-MM 混合模型预测 误差控制在 3%以内,当磨盘间隙为 0. 1 mm 时,碎磨制样短流程磨矿产品粒度≤0. 15 mm。 BP-MM 混合模型建模方 法可处理多特征与多参数融合的输入数据,有效提高建模精度和预测性能,为碎磨流程控制优化提供新思路。 

Abstract: In mineral beneficiation,the crushing and grinding process is the key material preparation stage. Aiming at the problem that the intrinsic parameters of the equipment are not considered in the mathematical model modeling method of the traditional crushing and grinding process,the mature matrix model is adopted in the crushing stage. Meanwhile,the multi-feature fusion ability of neural networks is utilized to process the structural characteristics of the equipment and the distribution of feed particle size in the grinding process,and the Back Propagation-Matrix Model ( BP-MM ) is established. Taking the short process of crushing and grinding sample preparation as an example,the matrix model of jaw crusher and roll crusher is constructed based on the crushing experimental data. The BP neural network model of disc mill with the gap parameters of grinding disc is constructed by neural network method,and the BP-MM hybrid model of short process of crushing and grinding sample preparation is constructed. Taking the mean absolute error,root mean square error and determination coefficient as evaluation indicators,the prediction results of the BP-MM hybrid model were compared with the simulation results of JKSimmet. The results demonstrated that the BP-MM hybrid model achieved prediction errors below 3%. When the gap of the grinding disc is 0. 1 mm,the particle size of the grinding product in the short process of crushing and grinding sample preparation is ≤0. 15 mm. The BP-MM hybrid model modeling method can handle the input of multi-feature and multi-parameter fusion,effectively improve the modeling accuracy and prediction performance,and provide new ideas for the control optimization of crushing and grinding process. 

Key words: crushing and grinding process,matrix model,neural network,particle size distribution 

中图分类号: