欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2025, Vol. 54 ›› Issue (7): 299-312.

• 矿物材料 • 上一篇    

基于机器学习和室内实验的固废湿喷混凝土性能研究 

王小平1   冯  亮1   胡亚飞   

  1. 1. 金川集团镍钴股份有限公司三矿区, 甘肃 金昌 737100;2. 北京科技大学资源与安全工程学院,北京 100083
  • 出版日期:2025-07-15 发布日期:2025-08-14
  • 通讯作者: 胡亚飞(1993—),男,讲师,博士。
  • 作者简介:王小平(1970—),男,高级工程师,硕士。
  • 基金资助:
    国家自然科学基金项目(编号:52374115,52204134)。 

Research on the Performance of Solid Waste Wet-shotcrete Based on Machine Learning and Laboratory Experiments 

WANG Xiaoping 1   FENG Liang 1   HU Yafei 2    

  1. 1. No. 3 Mine,Jinchuan Group Nickel and Cobalt Co. ,Ltd. ,Jinchang 737100,China; 2. School of Resource and Safety Engineering,University of Science and Technology Beijing,Beijing 100083,China
  • Online:2025-07-15 Published:2025-08-14

摘要: 针对中国西北地区某镍矿的固体废物资源化利用难题,以废石和戈壁砂为复合骨料,协同利用钢渣、高 炉矿渣及脱硫石膏等工业固体废物制备胶凝材料,研发了适用于地下岩体支护的固体废物基湿喷混凝土( Solid Waste Based Wet Shotcrete,SWC)。 采用响应面法进行试验方案设计,系统揭示了不同因素对 SWC 力学性能的影响规律,并 借助多种微观表征方法揭示了 SWC 的力学性能形成机制。 同时,通过机器学习算法建立了 SWC 配合比智能优化模 型。 结果表明:SWC 抗压强度随钢渣掺量增加呈先增大后减小的趋势(钢渣掺量为 30%时抗压强度达到最大 35. 2 MPa),胶砂比与抗压强度呈正相关关系,戈壁砂占比则与抗压强度呈负相关关系。 微观机理研究表明,戈壁砂占比会 影响骨料堆积体系的孔隙结构(戈壁砂占比为 0. 4 时骨料堆积密实度最大),钢渣掺量则调控胶凝体系的水化反应进 程,二者均通过改变材料密实度影响 SWC 的力学性能。 建模结果显示,通过哈里斯鹰算法(Harris Hawks Optimization,HHO)对支持向量回归( Support Vector Regression,SVR) 模型进行参数寻优,显著提升了预测精度( R 2 > 0. 99, RMSE<0. 20,VAF>99. 80),结合遗传算法(Genetic Algorithm,GA)构建的 HHO-SVR-GA 智能模型实现了 SWC 配合比 的精确设计(误差低于 5%)。 

关键词: 固体废物  地下支护  湿喷混凝土  机器学习  配合比设计 

Abstract: To solve the issue of solid waste resource utilization in a nickel mine in Northwest China,this study developed solid waste based wet shotcrete (SWC) for underground rock support by using waste rock and Gobi sand as mix aggregate and synergistically utilizing steel slag,blast furnace slag,desulfurization gypsum and other industrial solid wastes to prepare cementitious materials. The response surface method was used to design the experimental scheme,which systematically revealed the effect of different factors on the mechanical properties of SWC,and the formation mechanism of SWC with the help of various microscopic characterization methods. Meanwhile,an intelligent optimization model of SWC proportion was constructed by machine learning algorithm. The results show that the compressive strength of SWC increases and then decreases with the increase of dosage of steel slag (the compressive strength reaches a maximum of 35. 2 MPa when the dosage of steel slag is 30%),the ratio of rubber sand is positively correlated with the compressive strength,and the ratio of Gobi sand is negatively correlated with the compressive strength. The micro-mechanism study shows that the proportion of Gobi sand affects the pore structure of the aggregate stacking system (the aggregate stacking compactness is the largest when the proportion of Gobi sand is 0. 4),and the dosage of steel slag regulates the hydration reaction process of the cementitious system,and both of them affect the mechanical properties of SWC by changing the compactness of the material. The modeling results show that the parameter optimization of the support vector regression (SVR) model by Harris Hawks Optimization (HHO) significantly improves the prediction accuracy (R 2 >0. 99,RMSE<0. 20,VAF>99. 80),which is combined with Genetic Algorithm (GA). The HHO-SVR-GA intelligent model constructed by GA realized the accurate design of SWC ratio (error less than 5%). 

Key words: solid waste,underground support,wet shotcrete,machine learning,proportion design 

中图分类号: