欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2025, Vol. 55 ›› Issue (8): 19-26.

• 采矿工程 • 上一篇    下一篇

基于 RC-FCN 模型的岩体节理识别系统的研究

毛新洋1   金长宇1   东龙宾2   柳爱新3    

  1. 1. 东北大学资源与土木工程学院,辽宁 沈阳 110819;2. 中冶北方(大连)工程技术有限公司,辽宁 大连 116600; 3. 赤峰山金红岭有色矿业有限责任公司,内蒙古 赤峰 025463
  • 出版日期:2025-09-15 发布日期:2025-09-12
  • 通讯作者: 金长宇(1979—),男,教授,博士,博士研究生导师。
  • 作者简介:毛新洋(2000—),男,硕士研究生。
  • 基金资助:
    中央高校基本科研业务费项目(编号:N2101041);辽宁省科学技术计划项目(编号:2023JH1 / 10400004)。 

Research on the Rock Mass Joint Recognition System Based on the RC-FCN Model 

MAO Xinyang 1   JIN Changyu 1   DONG Longbin 2   LIU Aixin 3    

  1. 1. School of Resources and Civil Engineering,Northeast University,Shenyang 110819,China; 2. Northern Engineering& Technology Corporation,MCC,Dalian 116600,China; 3. Chifeng Shanjin Hongling Nonferrous Mining Co. ,Ltd. ,Chifeng 025463,China
  • Online:2025-09-15 Published:2025-09-12

摘要: 针对传统人工节理编录方法效率低、主观性强等问题,提出基于深度学习的残差注意力全卷积网络 (RC-FCN)模型。 通过融合全卷积网络的多尺度特征提取能力、残差模块的梯度优化特性以及通道—空间双维度注 意力机制,构建了具有跨层特征复用和动态权重分配功能的协同优化架构。 该模型在 VGG16 编码器基础上引入 ResNet 残差块增强深层特征表达能力,结合 CBAM 注意力模块实现节理边缘特征的精准聚焦,有效解决了井下复杂场景 下小尺度节理分割模糊和背景干扰问题。 试验结果表明,RC-FCN 模型在井下节理图像测试集上取得 92. 5%的综合 识别准确率,较传统 U-Net 模型提升 7%。 基于分割结果构建的产状参数解析算法,实现了“图像分割—特征提取—产 状计算”的智能编录流程。 通过倾角误差敏感性分析验证了模型对节理几何形态的鲁棒表征能力,为智慧矿山建设 提供了高效的技术解决方案。 

关键词: 节理识别  深度学习  语义分割  智慧矿山 

Abstract: Aiming at the problems of low efficiency and strong subjectivity of traditional artificial joint logging methods,a residual attention full convolutional network (RC-FCN) model based on deep learning is proposed. By integrating the multiscale feature extraction ability of the fully convolutional network,the gradient optimization characteristics of the residual module,and the channel-space two-dimensional attention mechanism,a collaborative optimization architecture with cross-layer feature multiplexing and dynamic weight allocation functions is constructed. Based on the VGG16 encoder,the model introduces the ResNet residual block to enhance the expression ability of deep features,and combines the CBAM attention module to realize the accurate focusing of joint edge features,which effectively solves the problem of small-scale joint segmentation blur and background interference in complex underground scenes. The experimental results show that the RC-FCN model achieves a comprehensive recognition accuracy of 92. 5% on the downhole joint image test set,which is 7% higher than the traditional UNet model. Based on the analysis algorithm of the attitude parameters constructed by the segmentation results,the intelligent cataloging process of ′image segmentation-feature extraction-attitude calculation′ is realized. The robust characterization ability of the model to the joint geometry is verified by the sensitivity analysis of the dip angle error,which provides an efficient technical solution for the construction of intelligent mines. 

Key words: joint identification,deep learning,semantic segmentation,intelligent mine 

中图分类号: