欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2025, Vol. 55 ›› Issue (8): 94-106.

• 矿山爆破 • 上一篇    下一篇

露天矿抛掷爆破振动速度峰值加权平均集成预测研究

龚  伟1   范雪强2   肖双双1   林士桢1   王红胜1   董国伟   

  1. 1. 西安科技大学能源与矿业工程学院,陕西 西安 710054;2. 浙江交通资源投资集团有限公司矿业分公司,浙江 杭州 310020
  • 出版日期:2025-09-15 发布日期:2025-09-16
  • 通讯作者: 肖双双(1988—),男,副教授,博士,硕士研究生导师。
  • 作者简介:龚  伟(2001—),男,硕士研究生。
  • 基金资助:
    国家自然科学基金项目(编号:52004202);新疆煤炭资源绿色开采教育部重点实验室开放课题项目(编号:KLXGY-KB2424)。 

Study on Weighted Average Integrated Prediction of Peak Vibration Velocity of Throwing Blasting in Open-pit Mine 

GONG Wei 1   FAN Xueqiang 2   XIAO Shuangshuang 1   LIN Shizhen 1   WANG Hongsheng 1   DONG Guowei 1    

  1. 1. College of Energy and Mining Engineering,Xi′an University of Science and Technology,Xi′an 710054,China; 2. Mining Branch,Zhejiang Communications Resources Investment Group Co. ,Ltd. ,Hangzhou 310020,China
  • Online:2025-09-15 Published:2025-09-16

摘要: 露天矿抛掷爆破振动速度峰值是评估爆破安全性和环境影响的关键指标之一。 为了提高振动速度峰 值预测的准确性,采用斯皮尔曼(Spearman)和肯德尔(Kendall)相关系数统计分析,并结合随机森林(RF)和极端梯度 提升(XGBoost)算法,筛选出影响振动速度峰值的主要特征。 根据分析结果,选择了爆心距离、高差、台阶高度、总药 量和平均单耗作为预测模型的输入变量。 采用加权平均法对 XGBoost 和改进粒子群算法优化混合核极限学习机( IPSO-HKELM)单一模型的预测结果进行集成,从而构建抛掷爆破振动速度峰值集成预测模型。 测试表明:采用加权平 均法对 XGBoost 和 IPSO-HKELM 的预测结果进行融合,并通过调整样本权重分配,显著提高了预测模型的性能。 加权 平均集成模型的评估指标决定系数(R 2 )、平均绝对误差(MAE)、均方根误差(RMSE)及平均绝对百分比误差(MAPE) 分别为 0. 977、0. 591、0. 921 和 17. 198%。 与传统方法相比,该加权平均法集成模型在评估指标上表现出了明显的提 升,尤其在 MAE 和 RMSE 上实现了较大幅度的优化,展现出其在实际应用中的优势。 

关键词: 抛掷爆破  极端梯度提升  混合核极限学习机  加权平均法 

Abstract: The peak vibration velocity of open-pit mine throw blasting is a critical parameter for assessing both the safety of blasting operations and their environmental impact. To enhance the accuracy of peak vibration velocity prediction,this study employed Spearman and Kendall correlation coefficients for statistical analysis. Furthermore, by integrating Random Forest (RF) and Extreme Gradient Boosting (XGBoost) algorithms,the most influential features affecting peak vibration velocity were identified. Based on these findings,blast center distance,height difference,bench height,total charge,and average unit consumption were selected as the input variables for the prediction model. The weighted average method was applied to combine the outputs of the XGBoost and improved particle swarm optimization hybrid kernel extreme learning machine(IPSO-HKELM) models,forming an integrated prediction framework. Results indicate that by fusing the predictions of these two models using the weighted average approach and adjusting the distribution of sample weights,the overall performance of the model was significantly enhanced. The determination coefficient (R 2 ),mean absolute error (MAE),root mean square error (RMSE) and mean absolute percentage error (MAPE) of the weighted average ensemble model were 0. 977,0. 591,0. 921 and 17. 198%,respectively. Compared with the traditional method,the weighted average method integration model shows a significant improvement in the evaluation index,especially in the MAE and RMSE,which shows its advantages in practical application. 

Key words: throwing blasting,XGBoost,HKELM,weighted average method 

中图分类号: