欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2025, Vol. 55 ›› Issue (8): 150-157.

• 机电与自动化 • 上一篇    下一篇

基于 MSC-ECA-Transformer 的矿用皮带输送电机 剩余寿命预测研究 

丁  榕1   邱成鹏2   王  帅2    

  1. 1. 中煤资源发展集团有限公司,北京 100007;2. 中煤信息技术(北京)有限公司,北京,100120
  • 出版日期:2025-09-15 发布日期:2025-09-16
  • 作者简介:丁  榕(1978—),女,工程师。
  • 基金资助:
    陕西省重点研发计划(编号:2023-YBGY-367);国家自然科学基金青年项目(编号:51704229)。 

Research on Residual Life Prediction of Mine Belt Conveyor Motor Based on MSC-ECA-Transformer 

DING Rong 1   QIU Chengpeng 2   WANG Shuai 2    

  1. 1. China National Coal Group Corporation,Beijing 100007,China; 2. China Coal Information Technology (Beijing) Co. ,Ltd. ,Beijing 100120,China
  • Online:2025-09-15 Published:2025-09-16

摘要: 矿用皮带输送电机剩余寿命预测是保障矿山安全生产的关键技术之一。 针对现有预测模型在特征提 取、时序依赖性建模及计算复杂度方面的不足,利用变频一体机上的多源传感器系统采集矿用皮带输送电机运行数 据,并基于 MSC-ECA-Transformer 模型进行剩余寿命预测。 该模型在 Transformer 主干网络中嵌入了多尺度因果膨胀 卷积(MSC)和高效通道注意力(ECA)模块,通过 MSC 构建多级时序特征提取,解决传统自注意力机制对设备渐进式 退化模式多尺度特征捕捉不足的问题。 同时引入 ECA 模块实现特征通道的动态权重分配,增强故障敏感特征的显著 性表达。 试验表明,MSC-ECA-Transformer 模型在预测精度和稳定性上表现优异,改进后模型的平均绝对误差(MAE) 以及均方根误差(RMSE)分别为 0. 085 1 以及 0. 091 8,与 Transformer 模型相比,分别降低 34. 0%及 36. 2%,为矿用电 机剩余寿命预测提供了技术支撑。 

关键词: 皮带运输机  电机  寿命预测  MSC-ECA-Transformer  多尺度因果膨胀卷积  时间序列

Abstract: The residual life prediction of mining belt conveyor motor is one of the key technologies to ensure the safety of mine production. In view of the shortcomings of the existing prediction models in feature extraction,time series dependence modeling and computational complexity,the multi-source sensor system on the frequency conversion machine is used to collect the operation data of the mine belt conveyor motor,and the residual life prediction is carried out based on the MSC-ECA-Transformer model. The model embeds a multi-scale causal dilated convolution (MSC) and an efficient channel attention (ECA) module in the Transformer backbone network. The multi-level temporal feature extraction is constructed by MSC to solve the problem of insufficient multi-scale feature capture of the progressive degradation mode of the device by the traditional self-attention mechanism. At the same time,the ECA module is introduced to realize the dynamic weight distribution of the feature channel and enhance the saliency expression of the fault sensitive features. The experimental results show that the MSC-ECATransformer model has excellent prediction accuracy and stability. The mean absolute error (MAE) and root mean square error (RMSE) of the improved model are 0. 085 1 and 0. 091 8,respectively. Compared with the Transformer model,they are reduced by 34. 0% and 36. 2%,respectively,which provides technical support for the residual life prediction of mining motors. 

Key words: belt conveyer,electrical machine,residual life prediction,MSC-ECA-Transformer,multiscale causal dilation convolution,time series 

中图分类号: