欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2025, Vol. 55 ›› Issue (8): 209-217.

• 安全与环保 • 上一篇    下一篇

糖蜜基泡沫抑尘剂的绿色合成及抑尘机理研究

马洪涛1   管彦太1   刘建峰1   智荣臻1   孙凤荣1   郭  坤1   王  杰1   自  卫1       姚传平1   赵新义1   赵梦柔2,3    

  1. 1. 鄂托克前旗长城三号矿业有限公司,内蒙古 鄂尔多斯 016299;2. 山东科技大学安全与环境工程学院,山东 青岛 266590; 3. 露天煤矿灾害防治与生态保护全国重点实验室,山东 青岛 266590
  • 出版日期:2025-09-15 发布日期:2025-09-16
  • 通讯作者: 赵梦柔(2001—),女,硕士研究生。
  • 作者简介:马洪涛(1984—),男,高级工程师,硕士。
  • 基金资助:
    国家自然科学基金面上项目(编号:52274215)。 

 Green Synthesis and Dust Suppression Mechanism of Molasses-based Foam Dust Suppressant 

MA Hongtao 1   GUAN Yantai 1   LIU Jianfeng 1   ZHI Rongzhen 1   SUN Fengrong 1   GUO Kun 1   WANG Jie 1 ZI Wei 1   YAO Chuanping 1   ZHAO Xinyi 1   ZHAO Mengrou 2,3    

  1. 1. Otog Front Banner Changcheng No. 3 Mining Co. ,Ltd. ,Ordos 016299,China; 2. College of Safety and Environmental Engineering,Shandong University of Science and Technology,Qingdao 266590,China; 3. State Key Laboratory of Disaster Prevention and Ecology Protection in Open-pit Coal Mines,Qingdao 266590,China
  • Online:2025-09-15 Published:2025-09-16

摘要: 为预防和控制煤尘造成的尘肺病和大气污染等问题,遵循“以废治尘”原则,利用制糖业副产物糖蜜制 备了糖蜜基泡沫抑尘剂。 通过在粘结剂糖蜜溶液(TM)中加入保水剂羧甲基壳聚糖(CMCS)、润湿剂鼠李糖脂(RL)、 起泡剂椰油酰胺丙基甜菜碱(CAPB),机械搅拌发泡得到糖蜜基泡沫抑尘剂(TM-CMCS / RC)。 利用正交试验优化配 比,通过接触角、固化层硬度和抑尘效率等试验测试性能,借助 FT-IR、SEM 和热重等表征手段分析结构,并利用 Materials Studio 软件进行分子动力学模拟。 试验结果表明:经抑尘剂处理,煤样表面羟基含量增加,亲水性增强;煤尘间空 隙和裂缝被填补,形成了致密的固化层;该抑尘剂热稳定性良好,在露天煤矿的极端环境下内部结构稳定;抑尘剂的 接触角为 35. 28°,润湿性能良好;固化层抗压强度达 53. 56 kPa,能有效抵御风蚀,在风速 12 m/ s 时固尘率仍超 90%, 抑尘效果显著优于其他对比样品,能满足露天煤矿煤尘治理的实际需求。 分子动力学模拟结果表明,与水/ 煤系统相 比,抑尘剂/ 煤系统中煤-水界面吸附层厚度增加了 4×10 -10 m,水的扩散系数 D 减小,说明抑尘剂增强了对煤分子的润 湿和吸附能力。 该抑尘剂环保可降解,制备方便,对煤尘治理和煤矿可持续发展具有重要意义。 

关键词: 煤尘  糖蜜  生物表面活性剂  泡沫抑尘剂  分子动力学模拟 

Abstract: In order to prevent and control issues such as pneumoconiosis and air pollution caused by coal dust,following the principle of " controlling dust with waste" ,a molasses-based foam dust suppressant was prepared using molasses,a by-product of the sugar industry. The molasses-based foam dust suppressant (TM-CMCS / RC) was obtained through mechanical stirring and foaming after adding carboxymethyl chitosan (CMCS) as water-retaining agent,rhamnolipid (RL) as wetting agent, and cocamidopropyl betaine (CAPB) as foaming agent to the binder molasses solution (TM). The orthogonal experiment was used to optimize the ratio,the performance was tested by experiments such as contact angle,solidified layer hardness,and dust suppression efficiency,the structure was analyzed by characterization methods such as FT-IR,SEM,and thermogravimetry,and molecular dynamics simulation was carried out using Materials Studio software. The experimental results showed that after treatment with the dust suppressant,the hydroxyl content on the surface of the coal sample increases,and the hydrophilicity is enhanced. The gaps and cracks between coal dust are filled,forming a dense solidified layer. The dust suppressant has good thermal stability,and its internal structure remains stable in the extreme environment of open-pit coal mines. The contact angle of the dust suppressant is 35. 28°,indicating good wettability. The compressive strength of the solidified layer reaches 53. 56 kPa, which can effectively resist wind erosion. When the wind speed is 12 m/ s,the dust fixation rate is still over 90%,and the dust suppression effect is significantly better than that of other comparative samples,meeting the actual requirements of coal dust control in open-pit coal mines. The results of molecular dynamics simulation showed that compared with the water/ coal system, the thickness of the adsorption layer at the coal-water interface in the dust suppressant / coal system increases by 4×10 -10 m, and the diffusion coefficient D of water decreases,indicating that the dust suppressant enhances the wetting and adsorption ability to coal molecules. The dust suppressant is environmentally friendly,biodegradable,and easy to prepare,making it highly significant for coal dust control and the sustainable development of coal mining. 

Key words: coal dust,molasses,biosurfactant,foam dust suppressant,molecular dynamic simulation 

中图分类号: