欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2025, Vol. 54 ›› Issue (10): 159-165.

• 机电与自动化 • 上一篇    下一篇

融合图神经网络和注意力机制的矿山无人运输车辆路径规划#br#

王 桃1 王 霞1 米宏军2
  

  1. 1. 西安建筑科技大学华清学院,陕西 西安 710043;2. 陕西华电榆横煤电有限责任公司,陕西 榆林 719000
  • 出版日期:2025-10-15 发布日期:2025-11-07
  • 作者简介:王 桃(1987—),女,讲师,硕士。
  • 基金资助:
    陕西省科技厅青年项目(编号:2024JC-YBQN-0607);陕西省2024 年大学生创新创业训练计划项目(编号:S202413679028);西安建筑
    科技大学华清学院2024 年度校级课程思政示范项目(编号:J20241106);西安建筑科技大学华清学院院级课题(编号:21KY01)。

Path Planning for Mining Autonomous Transport Vehicles Integrated with Graph Neural Networks and Attention Mechanism#br#

WANG Tao1 WANG Xia1 MI Hongjun2   

  1. 1. Huaqing College,Xi′an University of Architecture and Technology,Xi′an 710043,China;
    2. Shaanxi Huadian Yuheng Coal-fired Power Generation Co. ,Ltd. ,Yulin 719000,China

  • Online:2025-10-15 Published:2025-11-07

摘要: 针对矿山无人运输车辆在复杂动态环境下路径规划效率低、实时性差、安全性不足等问题,提出了一种
融合图神经网络(GNN)和注意力机制的路径规划方法。首先构建了基于道路拓扑的动态图结构,利用GNN 对路网
特征进行深度提取;其次,设计多头注意力机制捕获路段间的长程依赖关系,并引入时空注意力模块处理动态环境信
息;最后,基于强化学习框架实现路径规划的端到端训练。仿真试验表明:与传统A∗ 算法相比,所提方法计算耗时减
少45. 3%,路径长度缩短12. 7%;与Transformer 方法相比,规划成功率提升19. 1%,避障准确率提高14. 4%。在实际
矿区测试中,该方法能够有效应对复杂地形和动态障碍物,平均规划时间仅需0. 3 s,为矿山无人运输车辆的安全高效
运行提供了参考。

关键词: 矿山无人运输车辆 路径规划 图神经网络 注意力机制 强化学习

Abstract: To address the issues of low efficiency,poor real-time performance,and insufficient safety in path planning for
unmanned mining vehicles in complex and dynamic environments,a path planning method integrating Graph Neural Network
(GNN) and attention mechanism is proposed. Firstly,a dynamic graph structure based on road topology is constructed,and
GNN is utilized to deeply extract the features of the road network. Secondly,a multi-head attention mechanism is designed to
capture the long-range dependencies between road sections,and a spatio-temporal attention module is introduced to handle dynamic
environmental information. Finally,an end-to-end training of path planning is achieved based on the reinforcement learning
framework. Simulation experiments show that compared with the traditional A∗ algorithm,the proposed method reduces the
computational time by 45. 3% and shortens the path length by 12. 7%. Compared with the Transformer method,the planning
success rate is increased by 19. 1%,and the obstacle avoidance accuracy is improved by 14. 4%. In actual mine tests,this
method can effectively deal with complex terrains and dynamic obstacles,with an average planning time of only 0. 3 seconds,
providing a reference for the safe and efficient operation of unmanned mining vehicles.

Key words: mining autonomous transport vehicles,path planning,graph neural network,attention mechanism,reinforcement
learning

中图分类号: