欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2025, Vol. 54 ›› Issue (11): 74-82.

• • 上一篇    下一篇

球磨机操作参数对破碎速率的影响及神经网络预测模型

宋威威1 张 勇2 张兴隆1 唐李昊1 左蔚然1   

  1. 1.福州大学紫金地质与矿业学院,福建 福州 350108;2.中国科学院过程工程研究所,北京100190
  • 出版日期:2025-11-15 发布日期:2025-12-01
  • 通讯作者: 左蔚然(1983—),男,教授,博士,博士研究生导师。
  • 作者简介:宋威威(1998—),男,硕士研究生。
  • 基金资助:
    国家自然科学基金项目(编号:52074091)。

 Impact of Ball Mill Operating Parameters on Breakage Rate and Neural Network Prediction Model

 SONG Weiwei1 ZHANG Yong2 ZHANG Xinglong1 TANG Lihao1 ZUO Weiran1   

  1. 1.Zijin College of Geology and Mining,Fuzhou University,Fuzhou 350108,China; 2.Institute of Process Engineering,Chinese Academy of Sciences,Beijing 100190,China
  • Online:2025-11-15 Published:2025-12-01

摘要: 总体平衡模型是模拟球磨机运行过程最常用的模型框架,但其破碎速率参数随操作条件变化而变化的 规律难以确定。基于总体平衡模型的框架,对某钨矿石的球磨试验结果进行了数学建模,探究给矿量、入料粒度、介质 配比、装球率等因素对破碎速率的影响。基于试验数据,采用神经网络建立破碎速率的非线性预测模型,实现破碎速 率与操作参数的映射关系。结果表明,矿石的破碎速率随磨机转速率的增大而增大,随给矿量的减小而增加。球径大 的钢球会提高粗粒径矿石的破碎速率,而球径小的钢球则会提高细粒级矿石的破碎速率。制备粗中细3种粒度分布 的待磨样品,在相同磨矿条件下,不同的给矿粒度分布表现出不同的破碎速率,但随着磨矿的进行,粗粒级颗粒与标 准粒级给矿粒度分布逐渐相同。细颗粒的含量增多会提高粗颗粒矿石的破碎速率。神经网络的预测模型,预测结果 与实际试验数据良好吻合,决定系数R2=0.961,达到了预测效果。

关键词: 球磨机 总体平衡模型 破碎速率 神经网络

Abstract: The population balance model is the most commonly used framework for simulating the operation of ball mills. However,accurately characterizing the variation of breakage rate parameters with operational conditions remains challenging. Based on the framework of the population balance model,mathematical modeling was conducted on the ball milling test results of a tungsten ore to explore the effects of feed rate,feed particle size,media distribution,and ball filling rate on the breakage rate.A neural network-based nonlinear model was established using experimental data to map the relationship between breakage rate and these key parameters.The results indicate that the breakage rate increases with rising mill rotation speeds but decrea sing with increasing feed rates.Larger steel balls enhance the breakage rate of coarse particles,while smaller steel balls improve the breakage rate of fine particles.Three feed samples with coarse,medium,and fine particle size distributions were prepared. Under the same grinding conditions,different feed size distributions exhibited varying breakage rates.However,as grinding pro gressed,the coarse particle size distribution converged toward that of the standard feed.An increase in fine particle content was found to enhance the breakage rate of coarse particles.The predictive model based on neural networks shows strong consistency with experimental validation data,the coefficient of determination R2=0.961,confirming its reliable forecasting capability.

Key words: ball mill,population balance model,breakage rate,neural network

中图分类号: