欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2025, Vol. 54 ›› Issue (12): 201-207.

• 安全与环保 • 上一篇    下一篇

基于平衡图结构的边坡位移时空预测方法

郑海青1 陈莹莹1 孙晓云1 陈 勇1 靳 强2   

  1. 1.石家庄铁道大学电气与电子工程学院,河北 石家庄 050043;2.河北金隅鼎鑫水泥有限公司,河北 石家庄 050200
  • 出版日期:2025-12-15 发布日期:2025-12-31
  • 通讯作者:  孙晓云(1971—),女,院长,教授,博士,博士研究生导师。
  • 作者简介:郑海青(1983—),女,副教授,博士,硕士研究生导师。
  • 基金资助:
    河北省重点研发计划项目(编号:22375413D)。

A Spatio-Temporal Slope Displacement Prediction Based on Balanced Graph Structure

ZHENG Haiqing1 CHEN Yingying1 SUN Xiaoyun1 CHEN Yong1 JIN Qiang2   

  1. 1.School of Electrical and Electronic Engineering,Shijiazhuang Tiedao University,Shijiazhuang 050043,China; 2.Hebei Jinyu Zenith Cement Co.,Ltd.,Shijiazhuang 050200,China
  • Online:2025-12-15 Published:2025-12-31

摘要: 边坡位移监测在地质和土木工程领域中具有至关重要的作用,边坡位移的变化为预测滑坡和坍塌提供 了关键依据。传统神经网络在进行边坡位移预测时通常采用矩阵或张量来处理数据,忽略了监测点数据间的空间相 关性。图神经网络因能有效捕获图结构数据中节点间的空间关系而被逐渐应用于边坡位移预测领域。然而,传统的 图神经网络在应用于边坡位移预测时,往往只设计一个图结构,无法捕获不同时间段内监测点时空关系的动态变化。 针对这些问题,提出了一种基于平衡图结构的边坡位移预测模型,该模型结合了图结构学习和时间序列预测,能够捕 捉多个监测点位移序列之间的潜在时空关系,提高模型的复杂关系建模能力。在预测模型中,引入多图生成网络 (MGN)和图选择模块,MGN可以适应不同时间段内监测点时空关系的动态变化,使模型更具有灵活性,图选择模块 从MGN生成的图集中选择最优图,提高模型效率。为降低计算成本,引入“平滑稀疏单元SSU”稀疏化图结构。以石 家庄某水泥厂矿山边坡位移监测数据为例进行验证,结果表明,所提预测模型在保证预测精度的同时,计算成本大幅 下降,满足边坡监测预警需求。

关键词: 边坡 位移预测 平衡图 时空预测

Abstract: Slope displacement monitoring plays a vital role in the field of geology and civil engineering,where changes in slope displacement provide a key basis for predicting landslides and slumps.Traditional neural networks usually use matrices or tensors to process data in slope displacement prediction,ignoring the spatial correlation between monitoring point.Graph neural networks have been gradually applied to the field of slope displacement prediction because they can effectively capture the spa tial relationships between nodes in graph-structured data.However,traditional graph neural networks are often designed with only one graph structure when applied to slope displacement prediction,which cannot capture the dynamic changes of spatio temporal relationships between monitoring points in different time periods.To address these problems,a slope displacement pre diction model based on balanced graph structure is proposed,which combines graph structure learning and time series predic tion,and is able to capture the potential spatio-temporal relationships between displacement sequences of multiple monitoring points to improve the model's ability to model complex relationships.In the prediction model,the multi-graph generation net work (MGN) and the graph selection module are introduced.The MGN can adapt to the dynamic changes of the spatio-tempo ral relationships of the monitoring points in different time periods to make the model more flexible,and the graph selection module selects the optimal graphs from the set of the graphs generated by the MGN to improve the efficiency of the model.In order to reduce the computational cost,"Smooth Sparse Unit" is introduced to sparsify the graph structure.Taking the mine slope displacement monitoring data of a cement plant in Shijiazhuang as an example,the results show that the proposed predic tion model can greatly reduce the calculation cost while ensuring the prediction accuracy,and meet the needs of slope monito ring and early warning.

Key words: slope,displacement prediction,balanced graph,spatio-temporal prediction

中图分类号: