欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2009, Vol. 39 ›› Issue (06): 21-23.

• 采矿工程 • 上一篇    下一篇

人工神经网络在老采空区残余沉降的应用研究

张宏贞1,2,邓喀中1,2   

  1. 1.中国矿业大学;2.江苏省资源环境信息工程重点实验室
  • 出版日期:2009-06-08 发布日期:2011-07-21
  • 基金资助:

    *  国家自然科学基金项目(编号:40772191),中国矿业大学校青年教师基金(编号:OP061022),“十一五”国家科技支撑计划重点项目(编号:2006BAC09B01)。

An Artificial Neural Network Model for Predicting the Residual Subsidence of Abandoned Mine Goaf

Zhang Hongzhen1,2,Deng Kazhong1,2   

  1. 1.China University of Mining & Technology;2.Key Laboratory of Resources and Environment Information Engineering of Jiangsu Province
  • Online:2009-06-08 Published:2011-07-21

摘要: 在分析单一工作面残余沉降影响因素的基础上,通过利用观测站最大下沉速度之后的已有部分观测数据,采用L-M的BP算法,建立了老采空区残余沉降预测模型,并对模型进行对比分析。结果表明:用人工神经网络方法进行老采空区残余沉降预测是可行的,具有积极意义。

关键词: 老采空区, 残余沉降, 人工神经网络

Abstract: Based on the analysis of the factors influencing the residual subsidence of a single working face and the available observation data after the maximum subsidence speed, the model for predicting the residence subsidence of abandoned mine goaf is established by adopting L-M BP algorithm. A comparative analysis of the model is made and the results show that it is feasible to predict the residence subsidence of abandoned mine goaf by artificial neural network method, which is of positive significance.

Key words: Abandoned mine goaf, Residual subsidence, Artificial neutral networks