金属矿山 ›› 2011, Vol. 40 ›› Issue (11): 45-47+52.
• 采矿工程 • 上一篇 下一篇
蚩志锋,杨先武,谢文全
出版日期:
发布日期:
基金资助:
* 河南省教育厅自然科学研究计划项目(编号:2011B170010),信阳师范学院青年自然科学基金项目(编号: 20100055,20100056,20100057)。
Chi Zhifeng,Yang Xianwu,Xie Wenquan
Online:
Published:
摘要: 为了提高铁矿石消费量的预测精度,采用一种基于智能计算的时间序列预测方法。该方法首先对粒子群算法进行改进,然后利用它的全局寻优能力优化RBF神经网络的关键参数,最后了建立铁矿石的消费预测模型。实验结果表明:与其他预测方法相比,该方法预测精度较高,为铁矿石消费预测提供了一种新途径。
关键词: 粒子群算法, RBF神经网络, 铁矿石消费预测, 全局最优
Abstract: In order to improve the prediction accuracy of iron ore consumption,using a time series forecasting method based on intelligent calculation.First,the particle swarm algorithm was improved,and it was used to optimize the ability of global optimization of key parameters of RBF neural network;finally iron ore consumption prediction model was established.The results showed that: this method hada high prediction accuracy compare with other prediction methods,and providesda new way for iron ore consumption forecast.
Key words: Particle swarm optimization algorithm, RBF neural network, Iron ore consumption prediction, Global optimum
蚩志锋, 杨先武, 谢文全. 基于智能计算的铁矿石消费预测[J]. 金属矿山, 2011, 40(11): 45-47+52.
CHI Zhi-Feng, YANG Xian-Wu, XIE Wen-Quan. Consumption Prediction of Iron Ore Based on Intelligent Calculation[J]. Metal Mine, 2011, 40(11): 45-47+52.
/ 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://www.jsks.net.cn/CN/
http://www.jsks.net.cn/CN/Y2011/V40/I11/45