欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2011, Vol. 40 ›› Issue (11): 45-47+52.

• 采矿工程 • 上一篇    下一篇

基于智能计算的铁矿石消费预测

蚩志锋,杨先武,谢文全   

  1. 信阳师范学院城市与环境科学学院
  • 出版日期:2011-11-15 发布日期:2011-11-17
  • 基金资助:

    * 河南省教育厅自然科学研究计划项目(编号:2011B170010),信阳师范学院青年自然科学基金项目(编号: 20100055,20100056,20100057)。

Consumption Prediction of Iron Ore Based on Intelligent Calculation

Chi Zhifeng,Yang Xianwu,Xie Wenquan   

  1. College of Urban and Environment Science,Xinyang Normal University
  • Online:2011-11-15 Published:2011-11-17

摘要: 为了提高铁矿石消费量的预测精度,采用一种基于智能计算的时间序列预测方法。该方法首先对粒子群算法进行改进,然后利用它的全局寻优能力优化RBF神经网络的关键参数,最后了建立铁矿石的消费预测模型。实验结果表明:与其他预测方法相比,该方法预测精度较高,为铁矿石消费预测提供了一种新途径。  

关键词: 粒子群算法, RBF神经网络, 铁矿石消费预测, 全局最优

Abstract: In order to improve the prediction accuracy of iron ore consumption,using a time series forecasting method based on intelligent calculation.First,the particle swarm algorithm was improved,and it was used to optimize the ability of global optimization of key parameters of RBF neural network;finally iron ore consumption prediction model was established.The results showed that: this method hada high prediction accuracy compare with other prediction methods,and providesda new way for iron ore consumption forecast.

Key words: Particle swarm optimization algorithm, RBF neural network, Iron ore consumption prediction, Global optimum