欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2013, Vol. 42 ›› Issue (08): 8-10+15.

• 采矿工程 • 上一篇    下一篇

基于残差型G-LSSVM的岩石冒落高度及碴石厚度预测

陈尚波1,张耀平2,夏弋江1,田留峰1   

  1. 1.江西理工大学资源与环境工程学院;2.江西理工大学应用科学学院
  • 出版日期:2013-08-15 发布日期:2013-09-27

Prediction of Rock Caving Height and Ballast Stone Thickness Based on the Residuals G-LSSVM

Chen Shangbo1,Zhang Yaoping2,Xia Yijiang1,Tian Liufeng1   

  1. 1.Faculty of Resource and Environmental Engineering,Jiangxi University of Science and Technology; 2.School of Application & Science,Jiangxi University of Science and Technology
  • Online:2013-08-15 Published:2013-09-27

摘要: 受限于空区形成条件及其变化的复杂性、随机性,传统用于空区顶板围岩冒落高度及碴石厚度预测的方法往往预测精度偏低。为此,在结合各种单一人工智能预测方法优势的基础上,提出了一种新的预测模型——残差型灰色最小二乘支持向量机预测模型(G-LSSVM),将该模型应用到某铁矿的覆盖层冒落高度及碴石厚度预测中,预测的结果与实际钻孔摄影监测相比,结果极为接近。研究表明:残差型G-LSSVM用于覆盖层冒落高度及碴石厚度预测是有效可行的。

关键词: 残差型, 最小二乘支持向量机, 覆盖层冒落高度, 碴石厚度, 预测, 钻孔摄影

Abstract: Due to the complexity and randomness of the forming condition of the mined-out area and its change,the prediction accuracy for roof rock caving height and ballast stone thickness of the mined-out area by the traditional method is often lower.In this paper,combining with the advantages of various single forecasting methods based on artificial intelligence,a forecasting model of residual grey squares new support vector machine prediction model (G-LSSVM) is put forward and then applied to predicting the roof caving height and ballast stone thickness of an iron ore.The predicting results are very close to the actual drilling photography monitoring result.The tests show: the residual type G-LSSVM for predicting the covering caving height and ballast stone thickness is feasible and effective.

Key words: Residual type, Least squares support vector machine, Covering caving height, Ballast stone thickness, Prediction, Drilling photography