欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2015, Vol. 44 ›› Issue (03): 143-147.

• 地质与测量 • 上一篇    下一篇

基于D-InSAR技术和灰色Verhulst模型的矿区沉降监测与预计

杨俊凯1,2,范洪冬1,2,赵伟颖1,2,冯军1,2   

  1. 1.国土环境与灾害监测国家测绘地理信息局重点实验室,江苏 徐州 221116;2.中国矿业大学环境与测绘学院,江苏 徐州 221116
  • 出版日期:2015-03-15 发布日期:2015-07-31
  • 基金资助:

    * 国家自然科学基金项目(编号:41272389),江苏高校优势学科建设工程项目(编号:SZBF2011-6-B35),江苏省基础研究计划(自然科学基金)青年基金项目(编号:BK20130174)。

Monitoring and Prediction of Mining Subsidence based on D-InSAR and Gray Verhulst Model

Yang Junkai1,2,Fan Hongdong1,2,Zhao Weiying1,2,Feng Jun1,2   

  1. 1.NASG Key Laboratory of Land Environment and Disaster Monitoring,Xuzhou 221116,China;2.School of Environmental Science & Spatial Informatics,China University of Mining and Technology,Xuzhou 221116,China
  • Online:2015-03-15 Published:2015-07-31

摘要: 针对在地形复杂的矿区沉降观测资料不易获取的问题,将合成孔径雷达差分干涉技术(D-InSAR)与灰色Verhulst模型相结合,提出了一种矿山开采沉陷监测和预计方法。该方法首先对覆盖大柳塔煤矿某工作面的12景TerraSAR-X雷达数据进行D-InSAR处理,获取观测站沉降值;然后根据沉降量与时间的关系建立了基于灰色Verhulst模型的预测函数,对开采沉陷发展规律进行分析。试验结果表明:3个测试点D-InSAR监测数据的绝对和相对误差分别为2.8~15 mm,0.9%~6%;结合灰色Verhulst模型预测的绝对和相对误差分别为3.4~18.8 mm,1.2%~5.7%。上述研究结果进一步表明,所提出的方法可有效弥补矿区沉降实测数据的不足,为实现矿区开采沉陷监测和预计的一体化软件设计提供参考。

关键词: 沉降监测与预计, D-InSAR, 灰色Verhulst模型, 预测函数

Abstract: It is not easy to obtain the observation data of mining subsidence of the mining area with complex terrain.In order to solve the problem,a new mining subsidence monitoring and prediction method based on the combination of synthetic aperture radar differential interferometry(D-InSAR) technique and grey Verhulst model is proposed.Firstly,the 12 Terra SAR-X images that covered the experimental areas in the one working face of Daliuta coal mine are processed by using D-InSAR technique to obtain the subsidence values of observation stations.Secondly,the prediction function of grey Verhulst model is established based on the relationship of subsidence value and time to analyze the development law of mining subsidence.The experimental results show that,the absolute and the relative errors of D-InSAR monitoring values for three points are varied from 2.8 to 15 mm,and 0.9% to 6% respectively;The absolute error and relative error in prediction based on the grey Verhulst model Combined with D-InSAR technique are varied from 3.4 to 18.8 mm,and from 1.2% to 5.7% respectively.The experimental results above further indicate that,the method proposed in this paper can effectively make up the inadequacy of the measured data and provide reference for realizing the integration of mining subsidence monitoring and prediction.

Key words: Mining subsidence monitoring and prediction, D-InSAR, Grey Verhulst model, Prediction function