欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2016, Vol. 45 ›› Issue (02): 164-167.

• 安全与环保 • 上一篇    下一篇

基于遗传BP神经网络模型的矿区开采沉陷预计

毛文军   

  1. 包头市测绘院,内蒙古 包头 014030
  • 出版日期:2016-02-15 发布日期:2016-03-11
  • 基金资助:

    * 内蒙古自治区地质调查院基金项目(编号:2014-01-KY03)。

Mining Subsidence Prediction Method Based on Genetic BP Neural Network Model

Mao Wenjun   

  1. Baotou Surveying and Mapping Institute,Baotou 014030,China
  • Online:2016-02-15 Published:2016-03-11

摘要: 为解决常规方法监测矿区开采沉陷的可控性、可操作性差及精度低等问题,采用BP神经网络模型拟合矿区高程值对开采沉陷进行预计是一种有效方法。但传统BP神经网络模型为反向传播算法,在训练时需多次试算方可确定神经网络系统的连接权值和阈值,具有易陷入局部最小值、收敛慢等不足。为此,采用遗传算法(Genetic algorithm,GA)对BP神经网络模型参数进行优化以提高其泛化能力,构建了遗传BP神经网络模型(GA-BP)。以某矿区首采工作面地表25个已进行了三等水准联测的高程监测点数据作为遗传BP神经网络模型(GA-BP)的训练样本(15个监测点数据)和测试样本(其余10个监测点数据),分别采用BP神经网络模型、二次曲面拟合等方法与其进行试验对比,结果显示:遗传BP神经网络模型(GA-BP)具有更高的内、外符合精度及更小的残差,表明该方法有助于实现对矿区开采沉陷的高精度预计。

关键词: 开采沉陷, 遗传算法, BP神经网络, 遗传BP 神经网络, 高程拟合, 二次曲面拟合

Abstract: Aiming at the problems of the poor controllability and maneuverability and low accuracy of the conventional mining subsidence method,using the BP neural network model to conduct the mining subsidence by fitting of the heights of mining area is a ideal mining subsidence prediction method.But the traditional BP neural network model is the back propagation algorithm,the connection weights and thresholds of the BP neural network system can be obtained by experimental calculation in many times,the deficiencies of the BP neural network are easily falling into local minimum values,slow convergence,and so on.The parameters of the BP neural network model area optimized by genetic algorithm (GA) to improve the generalization ability of the BP neural network model to establish the genetic BP neural network model (GA-BP).25 sets of monitoring points values that are conducted the third level measurement of the first working face of the mining area are used as training samples (15 sets of monitoring points values) and prediction samples (the other 10 sets of monitoring points values) of the genetic BP neural network (GA-BP) respectively,the experimental results show that the internal precision and external precision of the genetic BP neural network model (GA-BP) are higher than the BP neural network model and quadric surface fitting method,besides that,the residuals of the BP neural network model (GA-BP) are lower than the BP neural network model and quadric surface fitting method.The above research results show that the genetic BP neural network model (GA-BP) is good to realize the high-precision mining subsidence prediction.

Key words: Mining subsidence, Genetic algorithm, BP neural network, Genetic BP neural network, Evaluation fitting, Quadric surface fitting