金属矿山 ›› 2016, Vol. 45 ›› Issue (05): 153-157.
谢海波
Xie Haibo
摘要: 由于矿井光照不均匀,加之大量粉尘附着于监控摄像头表面,导致获取的视频图像对比度不高且含有大量随机分布的颗粒状噪声。为提高该类图像的对比度,充分发挥矿井视频监控系统的效能,基于提升小波变换(Lifting wavelet transform LWT),提出了一种矿井不均匀光照图像的自适应增强算法。首先采用直方图规定化算法(Histogram specification,HS)对获取的矿井图像进行初步增强;其次对初步增强后的图像进行提升小波变换,由于图像中的随机噪声主要集中分布于高频小波分解系数中,低频小波分解系数基本不存在噪声,故保留低频小波分解系数,对高频小波分解系数提出了一种基于反正弦函数的改进阈值函数去噪模型进行噪声抑制;然后对低频小波分解系数和去噪后的高频小波分解系数进行重构,得到不含噪声的矿井图像;最后采用双直方图均衡化算法(Bi-histogram equalization,BHE)对去噪后的图像进行进一步增强。将所提算法分别与直方图规定化、反锐化掩膜、小波阈值去噪等算法进行性能对比,并采用峰值信噪比(Peak noise to ratio,PSNR)、均方根误差(Root mean square error,RMSE)以及边缘保持指数(Edge protection index,EPI)等指标对试验结果进行评价,结果表明:所提算法对于矿井光照不均匀图像的处理效果相对于其余算法而言效果较优,对于高效处理矿井视频图像有一定的参考价值。