欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2016, Vol. 45 ›› Issue (06): 185-188.

• 安全与环保 • 上一篇    下一篇

利用果蝇算法反演概率积分法开采沉陷预计参数

陈涛1,2,3,郭广礼1,2,3,朱晓峻1,2,3,郭庆彪1,2,3,方齐1,2,3   

  1. 1.中国矿业大学环境与测绘学院,江苏 徐州 221116;2.国土环境与灾害监测国家测绘地理信息局重点实验室,江苏 徐州 221116;3.江苏省资源环境信息工程重点实验室,江苏 徐州 221116
  • 出版日期:2016-06-15 发布日期:2016-08-19
  • 基金资助:

    * “十二五”国家科技支撑计划项目(编号:2012BAB13B03),国家自然科学基金青年基金项目(编号:41104011),江苏高校优势学科建设工程项目(编号:SZBF2011-6-B35),江苏省资源环境信息工程重点实验室基金项目(编号:JS201309)。

Mining Subsidence Prediction Parameters Inversion of the Probability Integral Method Based on Fruit Flies Algorithm

Chen Tao1,2,3,Guo Guangli1,2,3,Zhu Xiaojun1,2,3,Guo Qingbiao1,2,3,Fang Qi1,2,3   

  1. 1.School of Environment Science and Spatial Informatics,China University of Mining and Technology,Xuzhou 221116,China;2.National Administration of Surveying,Mapping and Geo-information Key Laboratory for Land Environment and Disaster Monitoring, Xuzhou 221116,China;3.Key Laboratory of Resource and Environment Information Engineering of Jiangsu Province,Xuzhou 221116,China
  • Online:2016-06-15 Published:2016-08-19

摘要: 针对概率积分法开采沉陷预计参数反演时存在算法复杂、计算量大等问题,将具有算法简单、计算量小、精度高等特点的果蝇算法引入到概率积分法开采沉陷预计参数反演中,研究了利用果蝇算法反演概率积分法开采沉陷预计参数的基本原理,构造了下沉拟合值与实测值均方差最小的适应度函数模型。结合安徽省某煤矿的实测数据,分别采用果蝇算法、遗传算法以及粒子群算法反演概率积分法开采沉陷预计参数,并以下沉拟合值与实测值的均方差为各算法反演精度的评价标准进行对比分析,结果表明:利用果蝇算法反演出的下沉拟合值与实测值的均方差(33.7 mm)以及相对中误差(1.4%)均小于同类条件下遗传算法、粒子群算法的反演结果,说明果蝇算法适用于反演概率积分法开采沉陷预计参数,对于提高概率积分法开采沉陷预计的精度有一定的参考价值。

关键词: 开采沉陷, 果蝇算法, 概率积分法, 参数反演, 遗传算法, 粒子群算法

Abstract: In order to solve the problems of complexity,large amount of calculating the mining subsidence prediction paramters inversion of the probability integral method,the fruit flies algorithm with the characteristics of simple,low computational complexity and high precision is introduced to the mining subsidence prediction parameters inversion of the probability integral method.The basic principle of the mining subsidence prediction parameters inversion of the probability integral method based on fruit flies algorithm is studied in depth.The fitness function model of minimum mean square of the subsidence fitting values and measured values is established.Based on the mining subsidence measured data of a coal mine in Anhui province,the mining subsidence prediction parameters inversion of the probability integral method are conducted by using the fruit flies algorithm,genetic algorithm and particle swarm algorithm respectively,the mean square error of the subsidence fitting values and measured values is taken as the evaluation criteria of the above three algorithms,the comparison results show that the mean square error of the subsidence fitting values and measured values is 33.7 mm,the relative mean error is 1.4%,which are lower than that of the genetic algorithm and particle swarm algorithm,therefore,it is further indicated that the fruit flies algorithm is suitable to conduct mining subsidence prediction parameters inversion of the probability integral method,it has some reference for improving the mining subsidence prediction precision of the probability integral method.

Key words: Mining subsidence, Fruit flies algorithm, Probability integral method, Parameter inversion, Genetic algorithm, Partical swarm algorithm