欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2017, Vol. 46 ›› Issue (10): 33-35.

• 国际矿山测量学术论坛专栏 • 上一篇    下一篇

基于RBF神经网络的GPS对流层延迟插值模型

马健武1,陶庭叶1,尹为松2   

  1. 1.合肥工业大学土木与水利工程学院,安徽 合肥 230009;2.安徽继远软件有限公司,安徽 合肥 230088
  • 出版日期:2017-10-15 发布日期:2017-10-15

Interpolation Model of GPS Tropospheric Delay Based on RBF Neural Network

Ma Jianwu1,Tao Tingye1,Yi Weisong2   

  1. 1.School of Civil and Hydraulic Engineering,Hefei University of Technology,Hefei 230009,China;2.Anhui Jiyuan Software Co.Ltd.,Hefei 230008,China
  • Online:2017-10-15 Published:2017-10-15

摘要: 为提高对流层延迟的内插精度,构建了一种基于RBF神经网络的GPS对流层延迟内插模型。以安徽省电力系统6个CORS基站的坐标和对流层延迟作为建模数据,4个CORS基站的坐标和对流层延迟作为测试数据,验证了该模型的可靠性。试验表明:所提模型的对流层延迟插值精度可达毫米级。

关键词: RBF神经网络, 对流层延迟, 数据插值

Abstract: In order to improve the accuracy of tropospheric delay interpolation,a model of delay tropospheric delay interpolation based on RBF neural network is established.Taking the coordinates and tropospheric delay of ten CORS base stations in Anhui Province as the modeling data,among them,the coordinates and tropospheric delay of the six CORS stations are taken as the modeling data,the coordinates and tropospheric delay of the other four CORS stations are used as test data to verify the reliability of the model.The experimental results show that the tropospheric interpolation accuracy of the test data reaches the millimeter level.

Key words: RBF neural net work, Tropospheric delay, Data interpolation