欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2017, Vol. 46 ›› Issue (10): 81-88.

• 国际矿山测量学术论坛专栏 • 上一篇    下一篇

煤炭资源空间分布分形特征和厚度变化规律分形滤波方法研究

刘星   

  1. 安徽理工大学地球与环境学院,安徽 淮南 232001
  • 出版日期:2017-10-15 发布日期:2017-10-15

Fractal Character of Coal Resources Distribution and the Spatial Distribution Law of Coal Thickness based on S-A method

Liu Xing   

  1. Faculty of Earth & Environment, Anhui University of Science and Technology, Huainan 232001, China
  • Online:2017-10-15 Published:2017-10-15

摘要: 利用全球煤炭资源量分布图和中国煤炭资源量数据,证实了煤炭资源空间分布的分形特征;基于煤炭形成的自相似性原理,利用淮北某煤田168个钻孔的10煤层层厚数据,通过正态变换和克里格插值,利用S-A方法进行多重分形滤波,将煤层厚度等值线图分解为背景图和异常图,背景图代表了煤层分布的趋势,其分布规律与下伏砂体指示的和沉积相分布有较好的对应关系,符合沉积学规律,异常图显示的煤层厚度次级变化特征也与沉积环境的填平补齐相对应,相比趋势面分析得到的趋势图和残差图,表达的煤层厚度分布规律更加清晰和精细,不仅表明煤层厚度的空间分布符合多重分形分布规律,而且表明多重分形方法对地质数据的处理和分析是十分有效的。

关键词: 煤层厚度, 空间分布规律, 分形与多重分形, S-A滤波, 自相似性

Abstract: With the use of global coal resources distribution and coal resources data of China, the fractal character of the spatial distribution of coal resources was confirmed; Based on self similarity principle of coal depositing, 10 coal seam thickness data from 168 boreholes in a Huaibei coalfield were treated through normal transformation and Kriging interpolation. The contour map of coal seam thickness was divided into background map and anomaly map by multi fractal filtering with S-A method. The background map represents the trend of coal seam distribution, where the distribution rule indicates that the underlying sands have a good corresponding relationship with sedimentary facies, under the sedimentological laws. The anomaly map showed that the variation of thickness level of coal seam corresponded to the sedimentary environment. Compared with the trend graph and residual plots obtained by the trend surface analysis, the multifractal distribution method described seam thickness more clearly. It indicates that spacial distribution of the coal seam thickness conforms to the multifractal distribution law, also show that the multifractal distribution method is effective in treating and analyzing the geological data.

Key words: Coal thickness, Spatial distribution, Multi-fractal, S-A filter, Self-similarity