欢迎访问《金属矿山》杂志官方网站,今天是 分享到:

金属矿山 ›› 2018, Vol. 47 ›› Issue (11): 176-180.

• 综合利用 • 上一篇    下一篇

鞍钢东部尾矿资源特征及磁选预富集工艺研究

周立波1,李文博1,2,徐瑞清2,韩跃新2   

  1. 1. 东北大学资源与土木工程学院,辽宁 沈阳 110819;2. 矿物加工科学与技术国家重点实验室,北京 102628
  • 出版日期:2018-11-15 发布日期:2018-12-19
  • 基金资助:

    * 国家自然科学基金项目(编号:51604064),中央高校基本业务科研费项目(编号:150103003),辽宁省博士启动基金项目(编号:201601027),矿物加工科学与技术国家重点实验室开放基金项目(编号:BGRIMM-KJSKL-2017-09)。

Study on Resources Process Mineralogy and Magnetic Pre-concentration of Eastern Tailings in Ansteel

Zhou Libo1,Li Wenbo1,2,Xu Ruiqing2,Han Yuexin2   

  1. 1. School of Resources and Civil Engineering, Northeastern University, Shenyang 110819,China; 2. State Key Laboratory of Mineral Processing Science and Technology, Beijing 102628,China
  • Online:2018-11-15 Published:2018-12-19

摘要: 鞍钢东部尾矿样铁品位为10.64%,FeO含量为2.71%,铁主要以赤(褐)铁矿形式存在,磁铁矿少量,且这些铁矿物嵌布粒度较细,单体解离度较低,常规选矿工艺难以获得高品质的铁精矿。为解决该二次资源的开发利用问题,对有代表性试样进行了选矿试验研究。结果表明,采用筒式弱磁选—立环高梯度强磁选的初级预富集工艺处理,抛尾产率达49.48%,获得铁品位为16.24%、铁回收为78.54%的初级预富集精矿;初级预富集精矿在磨矿细度为-0.043 mm占90%的情况下,采用筒式弱磁选—立环高梯度强磁选工艺处理,可获得铁品位为32.08%、铁回收率为62.68%的预富集精矿;采用弱磁选1—立环高梯度强磁选1初级预富集—初级预富集精矿细磨—弱磁选2—立环高梯度强磁选2再富集的阶段磨选流程处理试样,可获得铁品位32.08%、铁回收率62.68%的磁选预富集精矿,抛尾产率达79.21%,这有效降低了后续焙烧—磁选系统处理量,从而大幅度降低了后续生产成本,为二次铁矿石资源的高效利用提供了技术支持。

关键词: 磁选预富集, 初级预富集, 初级预富集精矿细磨, 再富集, 悬浮磁化焙烧

Abstract: The iron grade of ANSTEEL eastern tailings is 10.64%, and the FeO content is 2.71%. Iron minerals are mainly in the form of hematite and a small amount of magnetite, and the iron minerals are finely disseminated and dissociation degree is relatively lower, which is difficult to obtain high quality iron concentrate in conventional beneficiation process. In order to solve the problem of development and utilization of the secondary resources, beneficiation test was conducted on a representative sample. The results show that using the primary pre-enrichment process by low intensity magnetic clinder rough concentrate-vertical ring high gradient high intensity magnetic separation process, the tailings yield rate is up to 49.48%, and the primary pre-enriched concentrate is obtained with iron grade of 16.24% and iron recovery rate of 78.54%. The primary pre-enriched concentrate with the grinding fineness of -0.043 mm accounted for 90%, and vertical ring low intensity magnetic rough concentration-vertical ring magnetic scavenging process to obtain the iron grade of 32.08% and iron recovery of 62.68% pre-enriched concentrate. The primary pre-enrichment process by low intensity magnetic separation 1 and vertical ring high gradient high intensity magnetic separation 1 and the primary pre-enrichment concentrate is ground finely and re-enriched using the low intensity magnetic separation 2 and vertical ring high gradient high intensity magnetic separation. The magnetic pre-enriched concentrate with iron grade of 32.08% and iron recovery of 62.68% can be obtained, and the tailing yield is 79.21%. This method effectively reduces the processing capacity of the subsequent roasting and deep selection system, thereby effectively reducing the subsequent production costs and providing technical support for the efficient utilization of secondary iron ore resources.

Key words: Magnetic pre-concentration, Primary pre-enrichment process, Fine grinding of primary pre-enriched concentrate, Re-enrichment, Suspension magnetic roasting