欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2021, Vol. 50 ›› Issue (05): 149-159.

• 地质与测量 • 上一篇    下一篇

不同智能优化算法反演概率积分法参数的对比研究

梅  寒 陈炳乾1,2  王正帅1  高  建1  余  昊1   

  1. 1. 江苏师范大学地理测绘与城乡规划学院,江苏 徐州 221116;2. 长安大学地质工程与测绘学院,陕西 西安 710054
  • 出版日期:2021-05-15 发布日期:2021-05-12
  • 基金资助:
    国家自然科学基金项目(编号:41702375);中国博士后基金项目(编号:2019M663601);江苏高校优势学科建设工程资助项目(编号:PAPD);徐州市重点研发计划(社会发展)项目(编号:KC20180);江苏省研究生科研创新计划项目(编号:KYCX20_2371)。

Comparative Study on the Parameters of the Inversion Probability Integral Method with Different Intelligent Optimization Algorithms

MEI Han   CHEN Bingqian1,2    WANG Zhengshuai   GAO Jian   YU Hao1   

  1. 1. School of Geography,Geomatics and Planning, Jiangsu Normal University, Xuzhou 221116, China;2. College of Geological Engineering and Geomatics, Chang'an University, Xi'an 710054,China
  • Online:2021-05-15 Published:2021-05-12

摘要: 传统的概率积分法求参方法虽能较为精确地反演参数,但存在对工作面的类型以及测站的布设要求高、计算工作量大、效率低等不足,智能算法为精确确定概率积分模型最优参数提供了新方法。为探究不同智能优化算法在概率积分法求参过程中的性能,采用Matlab编程语言编写了模矢法、遗传算法、文化-粒子群算法、粒子群算法、果蝇算法和蚁群算法的运算程序,通过模拟试验,分别从算法的反演准确性、稳定性、抗误差干扰能力、全局寻优能力以及运行效率等方面进行了对比与分析。结果表明:当参数初值接近真值时,模矢法的反演准确性和效率最高;当参数初值与真值相差较大时,模矢法会陷入局部最优解,此时遗传算法的反演准确性和稳定性最强。从参数反演准确性和效率综合考虑,当参数范围已知时,最优算法为模矢法;当参数范围未知时,最优算法的选择依次为文化-粒子群算法、遗传算法、果蝇算法、粒子群算法、蚁群算法和模矢法。

关键词: 开采沉陷预计, 智能优化算法, 概率积分法, 参数反演

Abstract: Although the traditional probability integration method can invert the parameters more accurately, it has the disadvantages of high requirements for the type of working face and the layout of measuring station, large calculation workload and low efficiency.The intelligent algorithm provides a new method for accurately determining the optimal parameters of probabilistic integration model. In order to explore the performance of different intelligent optimization algorithms in the process of calculating the parameters of probabilistic integration method, operational procedures of the six models including modular vector method, genetic algorithm, culture-particle swarm algorithm, particle swarm algorithm, fruit fly algorithm and ant colony algorithm were written by using Matlab programming language. Through simulated tests,comparison and analysis of the above six algorithms are done from the aspects of algorithm inversion accuracy, stability, anti-error interference ability, global optimization ability and operating efficiency. The results show that when the initial value of the parameter is close to the true value, the inversion accuracy and efficiency of the modular vector method is the highest; when the initial value of the parameter differs greatly from the true value, the modular vector method will fall into a local optimal solution. The algorithm has the strongest inversion accuracy and stability. Considering the accuracy and efficiency of parameter inversion, when the parameter range is known, the optimal algorithm is the modular vector method; when the parameter range is unknown, the selection order of the optimal algorithm is culture-particle swarm algorithm, genetic algorithm, fruit fly algorithm, particle swarm algorithm, ant colony algorithm and modular vector method.

Key words: mining subsidence prediction, intelligent optimization algorithm, probability integral method, parameter inversion