欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2022, Vol. 51 ›› Issue (03): 165-170.

• 机电与自动化 • 上一篇    下一篇

开采沉陷移动变形数据处理与预计一体化系统

李世保  王磊  滕超群  李靖宇  李忠  黄金中   

  1. 安徽理工大学空间信息与测绘工程学院,安徽 淮南 232001
  • 出版日期:2022-03-15 发布日期:2022-04-02
  • 基金资助:
    国家自然科学基金项目(编号:52074010);安徽理工大学研究生创新基金项目(编号:2021CX2142)

Data Processing and Prediction Integrated System of Mining Subsidence Movement and Deformation

LI Shibao  WANG Lei  TENG Chaoqun   LI Jingyu  LI Zhong  HANG Jinzhong   

  1. School of Spatial Information and Surveying and Mapping Engineering,Anhui University of Science and Technology,Huainan 232001,China
  • Online:2022-03-15 Published:2022-04-02

摘要: 针对矿山开采沉陷地表移动变形数据处理量大、预计参数求取不稳定等不足,在借鉴和总结不同计算机语言开发系统优缺点的基础上,利用C#编程语言,结合Word和CAD开发出开采沉陷移动变形数据处理与预计一体化系统。该系统集成了数据管理、移动变形计算、输出报表以及契合CAD的移动变形曲线绘制功能,并构建了基于人工鱼群算法(Artificial Fish School Algorithm,AFSA)的Logistic单点沉陷预测模型。将该系统应用于顾桥矿1414(1)工作面,试验结果表明:①系统兼容性强、操作简便,提高了开采沉陷地表移动变形数据处理的准确性和效率,可将下沉、斜率、曲率、水平移动、水平变形曲线和相应的煤层按一定的比例在CAD软件上成图,便于从图中求取地表移动盆地各角量、距离参数以及任意点的对应值,克服了传统方法只能查看、无法定量分析的不足;②结合实测下沉数据,将基于AFSA的Logistic单点预测沉陷模型进行了应用,选取的2点绝对误差最大值分别为143.6 mm、132 mm,拟合中误差分别为65.6 mm、55.8 mm,求取参数的拟合效果符合工程应用要求。

关键词: 开采沉陷, 地表移动变形, 数据处理, C#开发, 预计模型

Abstract: In view of the shortcomings of large amount of data processing and unstable calculation of prediction parameters of mining subsidence surface movement and deformation,an integrated system of mining subsidence movement and deformation data processing and prediction is developed by using C# programming language based on the advantages and disadvantages of different computer languages and adotping the word and CAD softwares.The system integrates the functions of data management,movement deformation calculation,report output and movement deformation curve drawing in accordance with CAD,and constructs a Logistic single point prediction settlement model based on artificial fish school algorithm (AFSA).The system is applied to 1414 (1) working face of Guqiao Coal Mine.The test results show that:① the system is characterized by strong compatibility and simple operation,which improves the accuracy and efficiency of mining subsidence surface movement and deformation data processing.The horizontal deformation curves and the corresponding coal seam is plotted in CAD software according to a certain proportion,which is convenient to obtain the corresponding values of each angle,distance parameter and any point of the surface movement basin from the map,and overcome the shortcomings of the traditional method,which can only be viewed and cannot be quantitatively analyzed.② Combined with the measured subsidence data,the Logistic single point prediction model based on AFSA is applied.The maximum absolute errors of the two selected points are 143.6 mm and 132 mm respectively,and the mean square error of fitting is 65.6 mm and 55.8 mm respectively.The fitting effects of the parameters is in line with the engineering application standard.

Key words: mining subsidence,surface movement and deformation,data processing,C# development,prediction model