欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2022, Vol. 51 ›› Issue (11): 193-197.

• 安全与环保 • 上一篇    下一篇

融合自注意力机制的 Conv-LSTM 边坡位移预测方法

郑海青1 赵越磊1 宗广昌1 孙晓云1 靳强2
  

  1. 1. 石家庄铁道大学电气与电子工程学院,河北 石家庄 050043;2. 河北金隅鼎鑫水泥有限公司,河北 石家庄 050200
  • 出版日期:2022-11-15 发布日期:2022-12-08
  • 基金资助:
    国家自然科学基金项目(编号:51674169);河北省自然科学基金重点项目(编号:F2019210243);河北省高等学校科学技术研究项目 (编号:ZD2019140);河北省省级科技计划(编号:22375413D)

Prediction of Slope Displacement Based on Conv-LSTM Combined with Self-attention Mechanism

ZHENG Haiqing1 ZHAO Yuelei1 ZONG Guangchang1 SUN Xiaoyun1 JIN Qiang2 #br#   

  1. 1. School of Electrical and Electronic Engineering,Shijiazhuang Tiedao University,Shijiazhuang 050043,China;2. Hebei Jinyu Zenith Cement Co. ,Ltd. ,Shijiazhuang 050200,China
  • Online:2022-11-15 Published:2022-12-08

摘要: 露天矿边坡的稳定性直接影响到矿山的安全生产,边坡位移监测数据是表征边坡变形发展过程的重要参量,通过对监测数据进行分析研究,有助于实现滑坡预警。以河北金隅鼎鑫水泥有限公司某开采中的矿山边坡为例,基于监测点采集的边坡位移数据,建立了基于卷积—长短期记忆网络(Conv-LSTM)的多因素边坡位移预测模型。利用长短期记忆网络(Long Short-term Memory,LSTM)提取位移时间序列中的时序信息,通过卷积层提取位移序列中隐藏的深层特征。针对卷积层对于数据之间内部特征提取不充分的问题,引入自注意力机制(Self-attention Mechanism)充分提取边坡位移数据之间的关系特征。试验结果表明:融合自注意力机制的Conv-LSTM边坡位移预测模型的预测准确率较高,与原始位移序列的相关性较好,能更真实地反映边坡变形规律。

关键词: 露天边坡, 神经网络, 位移预测, 自注意力机制

Abstract: The stability of slopes in open-pit mines directly affects the safety production of mines.Slope displacement monitoring data are important parameters to characterize the development process of slope deformation,and the early warning of landslide can be realized by analyzing and studying the monitoring data.Taking a mining slope of Hebei Jinyu Zenith Cement Co.,Ltd.as the study example,based on the displacement data collected from the monitoring points,a multi-factor slope displacement prediction model based on Conv-LSTM is established.The Long short-term memory network (LSTM) is used to extract the timing information in the displacement time series,and the deep features hidden in the displacement series are extracted by the convolutional layer.Aiming at the problem that the convolutional layer is not sufficient to extract the internal features between the data,the self-attention mechanism is introduced to fully extract the relationship features between the slope displacement data by using the self-attention mechanism.The test results show that the Conv-LSTM slope displacement prediction model with self-attention echanism has higher prediction accuracy and better correlation with the original displacement sequence,which can more truly reflect the deformation law of the slope.

Key words: open-pit slope,neural network,displacement prediction,self-attention mechanism