欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2023, Vol. 52 ›› Issue (03): 86-93.

• 采矿工程 • 上一篇    下一篇

深部冻结井壁早期温度应力计算方法研究

李方政1,2 喻新皓1 张基伟3
  

  1. 1. 煤炭科学研究总院,北京 100013;2. 北京中煤矿山工程有限公司,北京 100013;3. 北京科技大学土木与资源工程学院,北京 100083
  • 出版日期:2023-03-15 发布日期:2023-04-12
  • 基金资助:
    国家自然科学基金项目(编号:51774183);国家自然科学基金青年基金项目(编号:51804157)。

Study on the Calculation Method of Early Temperature Stress of Deep Frozen Shaft Wall

LI Fangzheng1,3 YU Xinhao1 ZHANG Jiwei2   

  1. 1. China Coal Research Institute CCRI,Beijing 100013,China;2. University of Science and Technology Beijing,Beijing 100083,China;3. Beijing China Coal Mine Engineering Company Ltd. ,Beijing 100013,China
  • Online:2023-03-15 Published:2023-04-12

摘要: 为了研究不同时间节点深部冻结井壁早期温度应力变化规律,基于热传导原理与热弹性力学理论,推 导了考虑冻结井壁温度演化过程与混凝土弹性模量变化的冻结井筒内壁早期温度应力解析解。 以红庆河煤矿一号 风井 1. 7 m 厚壁座为例,分析了冻结井筒内壁早期温度应力的分布规律,确定了造成早期温度应力导致井壁裂缝高风 险区的主要原因。 研究表明:① 早期径向应力 σr 整体表现为压应力, σr 最大可达-2. 2 MPa,且总体沿冻结壁向井壁 内缘方向逐渐减小;在井壁任一位置处, σr 随着龄期的发展呈现先减小后增大的规律;② 早期环向应力 σθ 整体表现 为压应力, σθ 最大可达-8. 98 MPa,趋向冻结壁时, σθ 先迅速减小;趋向内壁缘时, σθ 先增大后减小;③ 早期竖向应 力 σ z 表现为压应力, σz 最大可达-19. 64 MPa,且整体随着龄期发展呈现先快速增大而后缓慢减小的规律;④ 建议未 来进行冻结井壁温度应力理论计算时,应根据工程类比法,拟合出同类井壁温度演化过程公式进行求解。 在上述分 析的基础上,提出了降低冻结井壁破裂风险的相关措施:① 减小井壁外缘侧与中心、内缘之间的温差;② 制备适用于 冻结井筒的抗裂型混凝土。

关键词: 深井建设, 冻结法, 温度应力, 温度场, 热弹性力学, 大体积混凝土

Abstract: In order to study the early temperature stress variation law of deep frozen shaft wall at different time nodes,an analytical solution of early temperature stress of frozen shaft wall was derived based on the heat conduction principle and thermoelastic mechanics theory,considering the temperature history of frozen shaft wall and the change of concrete elastic modulus. Taking the 1. 7 m thick wall seat of No. 1 air shaft in Hongqinghe Coal Mine as the study example,the distribution law of early temperature stress in the inner wall of frozen shaft was obtained,and the main reason of early temperature stress leading to high risk area of shaft fracture was determined. The study results show that:① In the early stage,the radial stress σr is compressive stress as a whole,and the maximum σr can reach -2. 2 MPa,and decreases gradually along the frozen wall to the inner edge of the shaft wall. At any position of the borehole wall, σr decreases first and then increases with the development of age. ② In the early stage,the annular stress σθ is compressive stress as a whole,and the maximum σθ can reach -8. 98 MPa. When it tends to the frozen wall, σθ decreases rapidly first. When tending to the inner wall edge, σθ increases first and then decreases. ③ In the early stage,the vertical stress σz is compressive stress,which can reach the maximum of -19. 64 MPa,and increases rapidly at first and then decreases slowly with the development of age. ④ It is suggested that the temperature history formula of the same kind of shaft wall should be fitted according to the engineering analogy method for the theoretical calculation of temperature stress of frozen shaft wall in the future. On this basis,the measures to reduce the risk of rupture of frozen borehole wall are put forward,including two ideas:① Reduce the temperature difference between the outer edge of borehole wall and the center and the inner edge. ② Prepare crack resistant concrete suitable for freezing wellbore.