欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2023, Vol. 52 ›› Issue (09): 47-53.

• 采矿工程 • 上一篇    下一篇

基于改进 Faster RCNN 的岩石热红外图像张剪裂纹检测

黄晓红1,2 卢 晔1 张润东3 董诗琪1
  

  1. 1. 华北理工大学人工智能学院,河北 唐山 062310;2. 河北省工业智能感知重点实验室,河北 唐山 062310;3. 华北理工大学管理学院,河北 唐山 062310
  • 出版日期:2023-09-15 发布日期:2023-11-03
  • 基金资助:
    河北省高等学校科学技术研究项目(编号:ZD2020152)。

Rock Thermal Infrared Image Tension-shear Crack Detection Based on Improved Faster RCNN

HUANG Xiaohong1,2 LU Ye1 ZHANG Rundong3 DONG Shiqi1 #br#   

  1. 1. College of Artificial Intelligence,North China University of Science and Technology,Tangshan 063210,China;2. Hebei Provincial Key Laboratory of Industrial Intelligent Perception,Tangshan 063210,China;3. College of Management,North China University of Science and Technology,Tangshan 063210,China
  • Online:2023-09-15 Published:2023-11-03

摘要: 区分岩石破裂模式对矿山灾害防治具有重要意义,为了能够有效识别岩石破裂模式、监测破坏过程,提 出了一种基于改进 Faster RCNN 的岩石热红外图像张剪裂纹检测算法。 首先开展花岗岩单轴压缩试验,使用红外热 像仪获取岩石破裂过程中的热红外图像,制作岩石红外裂隙数据集;然后对 Faster RCNN 网络模型进行改进,通过引 入注意力引导的上下文特征金字塔网络对特征提取方法进行优化,采用级联结构提升检测框回归准确度,同时使用 岩石红外裂隙数据集对模型进行训练及验证;最后对实测岩石红外图像进行张剪裂纹识别。 试验结果表明:该算法 检测精度达到了 94. 15%,每秒检测帧数为 19. 27 fps,综合性能得到显著提升,研究结果可为预测岩石破裂位置及破 裂模式提供一种思路。

关键词: 红外热成像技术, 岩石破裂, 张剪裂纹, 目标检测, Faster RCNN

Abstract: Distinguishing rock failure modes is of great significance for mine disaster prevention and control. In order to effectively identify rock failure modes and monitor the failure process,a strain shear crack detection algorithm based on improved Faster RCNN in rock thermal infrared images is proposed. Firstly,the uniaxial compression test of granite was carried out,and the thermal infrared image of rock fracture was obtained by infrared imager,and the infrared fracture data set of rock was made. Then,the Faster RCNN network model is improved,and the feature extraction method is optimized by introducing the attention-guided context feature pyramid network. A cascade structure is adopted to improve the accuracy of detection frame regression. At the same time,the infrared rock fracture data set is used to train and verify the model. Finally,the tensile shear crack identification is carried out in infrared image of measured rock. The experimental results show that the detection accuracy of the algorithm reaches 94. 15%,the detection frame number per second is 19. 27 fps,and the comprehensive performance is significantly improved. The research results can provide a way to predict the rock fracture location and fracture mode.

Key words: infrared thermal imaging technology,rock fracture,tension-shear crack,object detection,Faster RCNN