欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2024, Vol. 53 ›› Issue (01): 261-268.

• 矿物工程 • 上一篇    下一篇

基于深度学习的浮选回收率预测建模研究

赵红宇1,2 何桂春1,2 石 岩1,2 江长松1,2 吴为波1,2   

  1. 1. 江西省矿业工程重点实验室,江西 赣州 341000;2. 江西理工大学资源与环境工程学院,江西 赣州 341000
  • 出版日期:2024-01-15 发布日期:2024-04-21
  • 基金资助:
    国家自然科学基金项目(编号:52174249);江西省重点研发计划项目(编号:20203BBGL73231);江西省研究生创新专项资金项目(编号:YC2022-S660)。

Research on Flotation Recovery Rate Modeling Based on Deep Learning

ZHAO Hongyu1,2 HE Guichun1,2 SHI Yan1,2 JIANG Zhangsong1,2 WU Weibo1,2   

  1. 1. Jiangxi Province Key Laboratory of Mining Engineering,Ganzhou 341000,China;2. School of Resources and Environmental Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,China
  • Online:2024-01-15 Published:2024-04-21

摘要: 针对现有浮选回收率预测模型拟合度不高、预测误差大等问题,以某铜矿实际工况数据为基础,利用箱 图和滤波算法对数据进行预处理,采用传统机器学习算法(DT、SVR 和RF 算法)和深度学习算法(DNN 和CNN 算法) 构建相应浮选回收率预测模型。对5 种回收率预测模型的拟合效果、预测效果进行了对比分析,并采用现场数据进行 验证。结果表明:传统机器学习算法模型中RF 预测精度最佳,±2%误差区域命中率为80. 1%,±4%误差区域命中率 为93. 0%;深度学习模型预测效果均优于传统机器学习算法模型,DNN 和CNN 预测模型的R2 分别为0. 854、0. 907,± 2%误差区域命中率分别为91. 6%、90. 6%,±4%误差区域命中率分别为96. 6%、98. 1%。CNN 模型略优于DNN 模型, 但训练耗时较长,深度学习算法模型中首选DNN 模型。研究结果可为浮选回收率实时预测及浮选过程协同优化提供 技术支持。

关键词: 浮选回收率, 机器学习, 数据预处理, 深度学习

Abstract: Aiming at the problems such as low fitting degree and large prediction error of the existing flotation recovery prediction model,based on the actual working condition data of a copper mine,the box diagram and filtering algorithm were used to pre-process the data,and the corresponding flotation recovery prediction model was constructed by traditional machine learning algorithms (DT,SVR and RF algorithms) and deep learning algorithms (DNN and CNN algorithms). The fitting effect and prediction effect of five recovery prediction models were compared and analyzed,and verified by field data. The results showed that the RF prediction accuracy of the traditional machine learning algorithm model is the best,the error area of ±2% is 80. 1%,and the error area of ±4% is 93. 0%. The prediction effect of the deep learning model is better than that of the traditional machine learning algorithm model. The R2 of the DNN and CNN prediction models are 0. 854 and 0. 907,respectively; the accuracy of the ±2% error region is 91. 6% and 90. 6%,respectively;The accuracy of the ±4% error region is 96. 6% and 98. 1%,respectively. The CNN model is slightly better than the DNN model,but the training time is longer,thus the DNN model is the first choice in the deep learning algorithm model. The research results could provide technical support for real-time prediction of flotation recovery rate and collaborative optimization of flotation process.

Key words: flotation recovery rate,machine learning,data preprocessing,deep learning