欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2024, Vol. 53 ›› Issue (2): 212-.

• 机电与自动化 • 上一篇    下一篇

基于深度强化学习和大邻域搜索的矿山巡检机器人 路径规划算法

边艳华1 解 路2 苗 超1   

  1. 1. 许昌电气职业学院公共教学部 ,河南 许昌 461000;2. 郑州大学水利与土木工程学院,河南 郑州 450001
  • 出版日期:2024-02-15 发布日期:2024-04-03
  • 基金资助:
    河南省博士后基金项目(编号:202102015)。

Path Planning Algorithm of Mine Inspection Robot Based on Deep Reinforcement Learning and Large Neighborhood Search

BIAN Yanhua1 XIE Lu2 MIAO Chao1   

  1. 1. Department of Public Education,Xuchang Electrical Vocational College,Xuchang 461000,China; 2. School of Water Resources and Civil Engineering,Zhengzhou University,Zhengzhou 450001,China
  • Online:2024-02-15 Published:2024-04-03

摘要: 当前大多数矿山巡检机器人采用激光雷达作为矿山环境探测方法,该方法对于一些小目标物体和反照 率小的物体检测不明显,容易造成误检或漏检,从而引发矿山安全事故。为了提高矿山巡检机器人的识别精度,将基 于强化学习结合大邻域搜索的路径规划方法引入矿山巡检机器人路径规划工作中,提高矿山巡检机器人对场景的感 知能力。首先,提出了基于LSTM 的时序性路径规划模型,能够从机器人的RGB 相机中提取图像特征,通过深度学习 方式进行场景感知。其次,将激光雷达设备采集的信息进行处理,使用大邻域搜索算法找到空间中的多个最优路径, 用于后续场景导航。最终通过深度强化学习和大邻域搜索方法实现矿山巡检机器人精准导航,选择最佳的机器人巡 检路径。为了验证所提算法性能,在二维和三维空间中进行了场景搭建、导航模拟、模型训练和测试。结果表明:该方 法在仿真环境和真实场景中具有较好的路径规划能力。

关键词: 深度学习 大邻域搜索 时间序列 机器人 路径规划

Abstract: At present,most mine inspection robots use LiDAR as the detection method of mine environment,which is not obvious for some small target objects and objects with small albedo,and is easy to cause false detection or missing detection,resulting in mine safety accidents. In order to improve the recognition accuracy of the mine inspection robot,the path planning method based on reinforcement learning combined with large neighborhood search was introduced into the path planning work of the mine inspection robot to improve the scene perception ability of the mine inspection robot. Firstly,a sequential path planning model based on LSTM is proposed,which can extract image features from the RGB camera of the robot and carry out scene perception through deep learning. Secondly,the information collected by the LiDAR equipment is processed,and the large neighborhood search algorithm is used to find multiple optimal paths in the space for the navigation of the subsequent scene. Finally, deep reinforcement learning and large neighborhood search methods are used to achieve accurate navigation of mine inspection robots,and the best inspection path is selected. In order to verify the performance of the proposed algorithm,scene construction,navigation simulation,model training and testing are carried out in 2D and 3D space. The results show that this method has better capability of path planning in simulated environment and real scene.

Key words: deep learning,large neighborhood search,time series,robotics,path planning