欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2025, Vol. 54 ›› Issue (11): 250-257.

• 安全与环保 • 上一篇    下一篇

融合多源遥感数据和支持向量机的矿区土地利用变化研究

张笑蓉1 贾俊乾2 杜玉柱1   

  1. 1.山西水利职业技术学院测绘工程系,山西 运城 044000;2.吉林大学地球探测科学与技术学院,吉林 长春 130000
  • 出版日期:2025-11-15 发布日期:2025-12-02
  • 通讯作者: 贾俊乾(1974—),男,副教授,硕士。
  • 作者简介:张笑蓉(1986—),女,讲师,硕士。
  • 基金资助:
    2024年山西省水利科学技术研究推广项目(编号:2024GM11)。

 Research on Land Use Change in Mining Area by Integrating Multi-source Remote Sensing Data and Support Vector Machine

 ZHANG Xiaorong1 JIA Junqian2 DU Yuzhu1   

  1. 1.Department of Surveying and Mapping Engineering ,Shanxi Conservancy Technical Institute,Yuncheng 044000,China; 2.College of Geoexploration Science and Technology,Jilin University,Changchun 130000,China
  • Online:2025-11-15 Published:2025-12-02

摘要: 矿区土地利用变化的准确监测和分析,是矿区环境管理中的关键环节。传统方法在数据获取和分析精 度方面存在局限,难以全面反映矿区土地利用变化的时空特征。以山西省某矿区为例,提出了一种基于多源遥感数 据融合和支持向量机(SVM)分类算法的矿区土地利用变化分析方法。首先对矿区2020—2024年高分二号(GF-2)和 高分三号(GF-3)卫星影像、Landsat 8光学遥感数据以及Sentinel-1雷达数据通过辐射校正、几何校正和噪声滤除等步 骤进行预处理,并采用加权平均的多源数据融合技术,生成具有丰富信息的综合数据。然后利用支持向量机(Support Vector Machine,SVM)算法对不同时间段的融合遥感数据进行分类,准确识别并量化了土地利用类型变化。研究结果 表明:多源数据融合显著提高了土地利用分类精度,分类准确率达到了94.3%。该方法揭示了矿区不同土地利用类 型的时空变化特征,为矿区土地利用规划和环境监测提供了一种科学方法,有助于促进矿区环境可持续发展。

关键词: 多源遥感数据 支持向量机 土地利用变化 矿区环境监测 数据融合

Abstract: The accurate monitoring and analysis of land use changes in mining areas is a crucial part of environmental management in mining regions.Traditional methods have limitations in data acquisition and analysis accuracy,making it diffi cult to comprehensively reflect the temporal and spatial characteristics of land use changes in mining areas.Taking a mining ar ea in Shanxi Province as an example,a method for analyzing land use changes in mining areas based on multi-source remote sensing data fusion and Support Vector Machine (SVM) classification algorithm has been proposed.Firstly,satellite images from GF-2 and GF-3 satellites from 2020 to 2024,Landsat 8 optical remote sensing data,and Sentinel-1 radar data in the min ing area were obtained.The data were preprocessed through steps such as radiation correction,geometric correction,and noise filtering,and a multi-source data fusion technique using weighted averaging was adopted to generate comprehensive data with rich information.Then,the Support Vector Machine (SVM) algorithm was used to classify the fused remote sensing data of dif ferent time periods,accurately identifying and quantifying the changes in land use types.The research results show that multi source data fusion significantly improves the accuracy of land use classification,with a classification accuracy of 94.3%.This method reveals the temporal and spatial change characteristics of different land use types in the mining area,providing a scien tific method for land use planning and environmental monitoring in mining areas,and helping to promote the sustainable devel opment of the mining area′s environment.

Key words: multi-source remote sensing data,support vector machine,land use variation,environmental monitoring in mining area,data fusion

中图分类号: