欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2025, Vol. 54 ›› Issue (12): 223-228.

• 安全与环保 • 上一篇    下一篇

矿山边坡变形预测的IQPSO-SVM模型

郭 琦1 马俊杰2 王林郁1   

  1. 1.长治职业技术学院能源与安全工程系,山西 长治 046000;2.郑州大学水利与交通学院,河南 郑州 450001
  • 出版日期:2025-12-15 发布日期:2025-12-31
  • 通讯作者: 马俊杰(1989—),男,博士。
  • 作者简介:郭 琦(1985—),男,讲师,硕士。
  • 基金资助:
    国家自然科学基金项目(编号:71801195)。

IQPSO-SVM Model for Deformation Prediction of Mine Slope

GUO Qi1 MA Junjie2 WANG Linyu1   

  1. 1.Department of Energy and Safety Engineering,Changzhi Vocational and Technical College,Changzhi 046000,China; 2.School of Water Conservancy and Transportation,Zhengzhou University,Zhengzhou 450001,China
  • Online:2025-12-15 Published:2025-12-31

摘要: 实现矿山边坡变形监测分析,对于确保矿山安全生产具有重要作用。传统量子粒子群算法(Quantum Particle Swarm Optimization,QPSO)具有全局寻优能力强、控制参数少等优点,但易陷入过早收敛,影响预测精度。为 此,引入自适应学习因子,动态调整粒子搜索策略,提升QPSO算法的全局搜索能力及防止过早收敛性能。同时,结合 支持向量机(Support Vector Machine,SVM)模型在分类与回归问题上的优势,提出了基于改进QPSO(Improved QPSO, IQPSO)算法与SVM模型的集成预测模型(IQPSO-SVM模型)。该模型首先利用IQPSO算法优化SVM模型的超参 数,使得SVM模型能够更好地处理复杂地质数据;然后,将优化后的SVM模型应用于矿山边坡变形预测。以某矿山 边坡为例进行验证分析,结果显示:该模型对于矿山边坡变形的预测性能优于SVM、随机森林(RT)和PSO-SVM模型。

关键词: 边坡变形预测 粒子群优化 支持向量机 机器学习

Abstract: Realizing the monitoring and analysis of mine slope deformation is of great significance for ensuring the safety of mine production.The traditional Quantum Particle Swarm Optimization (QPSO) algorithm has the advantages of strong glob al optimization ability and few control parameters,but it is prone to premature convergence,which affects the prediction accura cy.Therefore,an adaptive learning factor is introduced to dynamically adjust the particle search strategy,enhancing the global search ability of the QPSO algorithm and preventing premature convergence.At the same time,by combining the advantages of the Support Vector Machine (SVM) model in classification and regression problems,an integrated prediction model (IQPSO SVM model) based on the improved QPSO (IQPSO) algorithm and the SVM model is proposed.This model first optimizes the hyperparameters of the SVM model using the IQPSO algorithm,enabling the SVM model to better handle complex geological data;then,the optimized SVM model is applied to the prediction of mine slope deformation.Taking a certain mine slope as an example for verification analysis,the results show that this model has certain advantages in predicting the deformation of mine slopes compared to the SVM,Random Forest (RT) and PSO-SVM models.

Key words: slope deformation prediction,particle swarm optimization,support vector machine,machine learning

中图分类号: