摘要: 矿石细粒度分类有助于提高矿石品位和回收率,降低能耗和环境污染。然而传统的矿石细粒度分类算 法通常基于经验模型或统计学习方法,缺乏对矿石颗粒物理特性和动力学行为的深入理解,导致分类效果不理想。 因而提出了一种融合混沌反向学习与分数阶微分的矿石细粒度分类算法,该算法首先利用混沌反向学习方法从矿石 颗粒的运动轨迹中提取其物理特征(如形状、密度、硬度等);然后使用分数阶微分方程建立矿石颗粒的动力学模型, 描述其在分类器中的运动状态;最后根据矿石颗粒的物理特征和动力学状态进行分类。研究表明:该算法不仅能够 有效顾及矿石颗粒的非线性、非平稳和多尺度特性,而且能够实现对矿石颗粒的在线、实时和自适应分类,提高了矿 石细粒度分类精度和效率。