欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2025, Vol. 54 ›› Issue (7): 166-171.

• 机电与自动化 • 上一篇    下一篇

基于超分辨率深度图像修复的输送带煤流检测算法 

范巧艳1   董  洁2   郭  攀   

  1. 1. 西安职业技术学院机电工程学院,陕西 西安 710077;2. 赤峰学院数学与计算机科学学院,内蒙古 赤峰 024000; 3. 郑州大学水利与交通学院,河南 郑州 450000
  • 出版日期:2025-07-15 发布日期:2025-08-12
  • 通讯作者: 董  洁(1978—),女,教授,硕士。
  • 作者简介:范巧艳(1986—),女,副教授,硕士。
  • 基金资助:
    河南省高等学校重点科研项目(编号:23ZX014)

Coal Flow Detection Algorithm for Conveyor Belts Based on Super-resolution Depth Image Restoration

FAN Qiaoyan 1   DONG Jie 2   GUO Pan 3    

  1. 1. School of Mechanical and Electrical Engineering,Xi′an Vocational and Technical College,Xi′an 710077,China; 2. College of Mathematics and Computer Science,Chifeng University,Chifeng 024000,China; 3. School of Water Conservancy and Transportation,Zhengzhou University,Zhengzhou 450000,China
  • Online:2025-07-15 Published:2025-08-12

摘要: 由于输送带的运动速度快、煤流的形状和颜色变化大,并且光照条件复杂,传统的输送带煤流检测方法 往往存在准确性不高、易受干扰等问题。 为此,提出了一种基于超分辨率深度图像修复的输送带煤流检测算法。 该算 法采用 YOLOv3 作为基础框架,结合超分辨率深度图像修复模型,对模糊且含有噪声的煤流图像进行处理。 图像修复 模型通过编码器—解码器结构,对破损图像的特征进行提取和修复,同时保留浅层纹理信息并将其传递至深层。 处 理后的清晰煤流图像,通过基于 YOLOv3 的目标检测算法进行煤流检测。 在北方某煤炭加工厂的试验结果表明:当图 像破损度为 50% 时,相比于基于互编码器的图像修复模型,所提图像修复模型结构相似性提升了 10%;相比于 YOLOv4-tiny,所提煤流检测算法的处理速度提升了 56 帧/ s,反映出该算法可有效提高输送带煤流检测效率。 

关键词: 目标检测  输送带  煤流  超分辨率  图像修复  深度学习 

Abstract: Due to the high speed of the conveyor belt,the large variations in the shape and color of the coal flow,and the complex lighting conditions,traditional methods for detecting the coal flow on conveyor belts often suffer from low accuracy and are prone to interference. Therefore,a coal flow detection algorithm based on super-resolution depth image restoration is proposed. This algorithm uses YOLOv3 as the basic framework and combines a super-resolution depth image restoration model to process blurred and noisy coal flow images. The image restoration model,through an encoder-decoder structure,extracts and repairs the features of damaged images while preserving shallow texture information and passing it to deeper layers. The processed clear coal flow images are then detected using the YOLOv3-based object detection algorithm. Experimental results from a coal processing enterprise in Northern China show that when the image damage rate is 50%,the proposed image restoration model improves the structural similarity by 10% compared to the mutual encoder-based image restoration model. Compared to YOLOv4-tiny,the proposed coal flow detection algorithm increases the processing speed by 56 fps,demonstrating that this algorithm can effectively improve the efficiency of coal flow detection on conveyor belts. 

Key words: object detection,conveyor belt,coal flow,super-resolution,image restoration,deep learning

中图分类号: