欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2025, Vol. 54 ›› Issue (7): 189-194.

• 安全与环保 • 上一篇    下一篇

基于集成学习的矿山能耗预测与异常检测方法

索智文1   贾美玲2   闫  明2   屈  波1   周超逸1    

  1. 1. 国能神东煤炭智能技术中心,陕西 榆林 719315;2. 陕西亿杰鑫信息技术有限公司,陕西 西安 710065
  • 出版日期:2025-07-15 发布日期:2025-08-13
  • 作者简介:索智文(1980—),男,高级工程师,硕士。
  • 基金资助:
    中国神华能源股份有限公司神东煤炭分公司科技创新项目(编号:E210100270)。 

Mine Energy Consumption Prediction and Anomaly Detection Method Based on Ensemble Learning 

SUO Zhiwen 1   JIA Meiling 2   YAN Ming 2   QU Bo 1   ZHOU Chaoyi 1    

  1. 1. Guoneng Shendong Coal Intelligent Technology Center,Yulin 719315,China; 2. Shaanxi Yijiexin Information Technology Co. ,Ltd. ,Xi′an 710065,China
  • Online:2025-07-15 Published:2025-08-13

摘要: 随着矿山自动化和智能化的不断发展,智慧矿山已成为矿山行业转型升级的重要方向。 能耗优化和异 常检测是智慧矿山建设中的关键环节,对矿山安全生产和经济效益至关重要。 提出了一种基于集成学习策略的矿山 能耗预测与异常检测方法。 首先,构建了一个基于集成学习的能耗预测模型。 该模型利用历史能耗数据和实时监测 数据,通过集成支持向量机、随机森林和神经网络等算法,对矿山能耗进行实时预测和优化。 其次,提出了一种基于集 成学习的异常检测方法。 该方法将孤立森林、局部异常因子和自编码器等算法进行集成,对矿山能耗数据进行异常 检测。 将所提方法应用于某矿山,结果表明:与单一方法相比,该方法可以有效降低矿山能耗,提高异常检测的准确 性,为矿山智能化建设提供了技术支持。

关键词: 智慧矿山  集成学习  异常检测  支持向量机  随机森林  神经网络 

Abstract: With the continuous development of mine automation and intelligence,smart mines have become an important direction for the transformation and upgrading of the mining industry. Energy consumption optimization and anomaly detection are key links in the construction of smart mines,which are crucial for the safety production and economic benefits of mines. A method for mine energy consumption prediction and anomaly detection based on ensemble learning strategy is proposed. Firstly, an energy consumption prediction model based on ensemble learning is constructed. This model uses historical energy consumption data and real-time monitoring data,and predicts and optimizes mine energy consumption through integrating algorithms such as support vector machine,random forest,and neural network. Secondly,an anomaly detection method based on ensemble learning is proposed. This method integrates algorithms such as isolation forest,local anomaly factor and autoencoder to detect anomalies in mine energy consumption data. The proposed method is applied to a mine,and the results show that compared with a single method,this method can effectively reduce mine energy consumption and improve the accuracy of anomaly detection, providing technical support for the intelligent construction of mines. 

Key words: smart mine,integrated learning,anomaly detection,support vector machine,random forest,neural network 

中图分类号: