欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2025, Vol. 54 ›› Issue (9): 176-183.

• 机电与自动化 • 上一篇    下一篇

基于 PRE-PLS 的 XRF 煤炭灰分智能预测算法 

孙  明1   廖祥国1   王邵康1   高  单1   孙嘉悦1   黄筱俊2   何光明2   李博昊3   吴威辰3    

  1. 1. 平顶山天安煤业股份有限公司,河南 平顶山 467099;2. 中兴通讯股份有限公司,广东 深圳 518057; 3. 沈阳隆基智能技术研究有限公司,辽宁 沈阳 110167
  • 出版日期:2025-09-15 发布日期:2025-10-10
  • 通讯作者: 廖祥国(1970—),男,总工程师,正高级工程师,硕士。
  • 作者简介:孙  明(1981—),男,工程师,硕士。

PRE-PLS-Based Intelligent Prediction Algorithm for Coal Ash Content Using XRF 

SUN Ming 1   LIAO Xiangguo 1   WANG Shaokang 1   GAO Dan 1   SUN Jiayue 1   HUANG Xiaojun 2 HE Guangming 2   LI Bohao 3   WU Weichen 3    

  1. 1. Pingdingshan Tianan Coal Mining Co. ,Ltd. ,Pingdingshan 467099,China;2. ZTE Corporation,Shenzhen 518057,China; 3. Longi Intelligent Technology Research Co. ,Ltd. ,Shenyang 110167,China
  • Online:2025-09-15 Published:2025-10-10

摘要: 煤炭灰分值是衡量煤炭质量的关键指标之一,灰分含量和性质对燃烧设备、环境、后续的加工利用都有 着极大影响。 针对目前煤炭灰分检测方法的滞后性、劳动密集型问题,提出了一种基于 XRF 光谱的预处理(Preprocessing,PRE)与偏最小二乘法(Partial Least Squares,PLS)相结合的 XRF 煤炭灰分智能预测算法。 通过将 XRF 技术获 取煤炭样品的光谱数据输入 PLS 主模型初步预测灰分,再将相关校正参数输入补偿优化模型中,最终将两者相加得 到预测灰分值。 试验结果表明:相对于偏最小二乘法回归、神经网络回归模型,PRE-PLS 模型决定系数为 0. 995 1,均 方根误差为 0. 941 1,平均绝对误差为 0. 733 2%,表明该模型具备较高的精度,能够胜任现场检测工作,为生产提供可 靠指导。 

关键词: X 射线荧光光谱(XRF)  煤炭  灰分预测  偏最小二乘法(PLS)  光谱预处理

Abstract: Coal ash content is one of the key indicators for evaluating coal quality. The content and properties of ash significantly impact combustion equipment,the environment,and subsequent processing and utilization. To address the issues of lagging and labor-intensive methods in current coal ash detection,an intelligent prediction algorithm for coal ash content based on X-ray Fluorescence (XRF) spectroscopy combined with Preprocessing (PRE) and Partial Least Squares (PLS) regression is proposed. The process involves inputting spectral data of coal samples obtained via XRF technology into the PLS main model for an initial ash content prediction. Relevant correction parameters are then fed into a parameter compensation optimization model. The final predicted ash content value is derived by summing these two results. Experimental results indicate that,compared to partial least squares regression and neural network (NN) regression models,the PRE-PLS model exhibits the smallest fluctuation range in relative error. Compared with partial least squares regression and neural network regression models, the determination coefficient of the PRE-PLS model is 0. 995 1, the root mean square error is 0. 941 1, and the mean absolute error is 0. 733 2%. This indicates that this model has high accuracy and is capable of performing on-site detection tasks, providing reliable guidance for production. 

Key words: X-ray fluorescence spectroscopy (XRF),coal,ash content prediction,partial least squares (PLS), spectral preprocessing 

中图分类号: