欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2025, Vol. 54 ›› Issue (9): 184-191.

• 机电与自动化 • 上一篇    下一篇

融合 RW-RRT 与 IAFT 的矿区巡检机器人路径规划模型

王晓燕1   董金明2   刘  上3   

  1. 1. 鹤壁能源化工职业学院电子信息工程系,河南 鹤壁 458030;2. 安阳学院计算机科学与数学学院,河南 安阳 455000; 3. 郑州大学水利与交通学院,河南 郑州 450000
  • 出版日期:2025-09-15 发布日期:2025-10-10
  • 通讯作者: 董金明(1978—),男,讲师,硕士。
  • 作者简介:王晓燕(1984—),女,讲师。
  • 基金资助:
    国家自然科学基金项目(编号:71801195)。 

Path Planning Model of Mine Inspection Robot Integrating RW-RRT and IAFT

WANG   Xiaoyan 1   DONG   Jinming 2   LIU   Shang 3   

  1. 1. Department of Electronic Information Engineering,Hebi Vocational College of Energy and Chemistry,Hebi 458030,China; 2. School of Computer Science and Mathematics,Anyang University,Anyang 455000,China; 3. School of Water Conservancy and Transportation,Zhenghou University,Zhengzhou 450000,China
  • Online:2025-09-15 Published:2025-10-10
  • Supported by:

摘要: 矿区巡检机器人的路径规划面临复杂环境、动态障碍和不确定因素等挑战,为此提出了一种融合改进 快速随机树算法(Rapidly-exploring Random Tree,RRT)与人工势场法(Artificial Potential Field,APF)的路径规划思路。 以快速随机树算法(RRT)为基础,引入随机游走法(Random Walk,SW)进行寻优策略优化。 在此基础上,为进一步提 升动态障碍环境下的适应性与避障能力,对 APF 算法中的引力和斥力参数计算方法进行了优化改进,最终提出了一 种融合 SW-RRT 和 IAPF 的矿区巡检机器人路径规划模型(SW-RRT-IAPF 模型)。 试验结果表明:SW-RRT-IAPF 模型 路径规划成功率最高为 97. 13%,路径平滑度最高为 93. 61%,路径平均规划时间最短为 0. 66 s。 在矿区复杂环境中相 比传统方法缩短了约 35%的路径规划时间,同时路径平滑度提升了 22%。 所提模型在白天和夜晚环境中均能优化路 径规划效率,有效避开动态障碍,为矿区巡检机器人路径规划提供了新方案。 

关键词: 矿区巡检机器人  路径规划  避障  RRT  APF

Abstract: The path planning of the mining area inspection robot faces challenges such as complex environments,dynamic obstacles and uncertain factors. Therefore,a path planning idea integrating the improved Rapidly-exploring Random Tree algorithm (RRT) and the Artificial Potential Field (APF) method is proposed. This method is based on the RRT algorithm and introduces the Random Walk (SW) algorithm for optimization of the search strategy. On this basis,to further improve the adaptability and obstacle avoidance ability in dynamic obstacle environments,the calculation method of the gravitational and repulsive force parameters in the APF algorithm is optimized and improved. Finally,a path planning model for the mining area inspection robot integrating SW-RRT and IAPF (SW-RRT-IAPF model) is proposed. The experimental results show that the path planning success rate of the SW-RRT-IAPF model is the highest at 97. 13%,the path smoothness is the highest at 93. 61%,and the average path planning time is the shortest at 0. 66 seconds. Compared with traditional methods,the path planning time in complex mining environments is reduced by approximately 35%,and the path smoothness is improved by 22%. The proposed model can optimize the path planning efficiency in both daytime and nighttime environments,effectively avoid dynamic obstacles,and provide a new solution for the path planning of mining area inspection robots. 

Key words: minspection robot in mining area,path planning,obstacle avoidance,RRT,APF 

中图分类号: