欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2025, Vol. 54 ›› Issue (9): 264-271.

• 地质与测量 • 上一篇    下一篇

基于低成本激光雷达 SLAM 系统的深部采空区探测及三维建模 

王  植  段  诺  毛亚纯   

  1. 东北大学资源与土木工程学院,辽宁 沈阳 110819
  • 出版日期:2025-09-15 发布日期:2025-10-10
  • 作者简介:王  植(1979—),男,副教授,博士,硕士研究生导师。
  • 基金资助:
    国家自然科学基金面上项目(编号:41271013)。 

Deep Goaf Detection and 3D Modeling Based on Low-cost Lidar SLAM System 

WANG Zhi  DUAN Nuo  MAO Yachun    

  1. School of Resources and Civil Engineering,Northeastern University,Shenyang 110819,China
  • Online:2025-09-15 Published:2025-10-10

摘要: 矿山深部采空区已成为威胁矿山人员和生产设备安全的重要危险源。 针对现有深部采空区探测方法 成本高、时效性差、测量盲区多等问题,设计了一种探入式三维激光雷达扫描系统进行采空区探测。 该系统采用廉价 的机械旋转式激光雷达降低成本;通过自主设计的基于图优化 Cartographer-SLAM(Cartographer Simultaneous Localization and Mapping)算法,能够快速处理激光雷达数据,实现在井下实时定位与建图,提高了时效性;搭配探入式三维激 光雷达扫描系统支架,可在危险巷道、采空区等人员难以进入的区域进行测量,有效减少测量盲区。 为解决现有建模 算法构建的采空区模型不光滑、孔洞多等问题,提出了一种基于移动最小二乘法(Moving Least Squares,MLS)优化的 泊松曲面重建算法,对采空区点云数据进行建模,通过 MLS 法对数据点周围进行高阶多项式插值,经过八叉树分割、 向量场计算、泊松方程求解、等值面提取,构建采空区三维模型。 在辽宁省某金矿开展试验,通过采集多处采空区、巷 道及地下硐室数据,实现了井下空间精确建模。 试验结果表明:所设计的系统和算法,可高效、精确地实现深部复杂采 空区三维建模,在一定程度上解决了深部复杂采空区探测中空区难以进入、存在测量盲区、建模精度不高等问题,为 采空区管理和安全生产提供重要技术支持。 

关键词: 深部采空区  激光雷达  及时定位与地图构建  移动最小二乘法  泊松曲面重建  建模 

Abstract: Deep goad in mines have become a significant hazard to the safety of personnel and production equipment in mines. In response to the problems of high cost,poor timeliness,and numerous measurement blind spots in existing deep goaf detection methods,a penetrating three-dimensional laser radar scanning system has been designed for goaf detection. This system uses an inexpensive mechanical rotating laser radar to reduce costs;through an independently designed graph optimizationbased Cartographer-SLAM (Simultaneous Localization and Mapping) algorithm,it can quickly process laser radar data,achieving real-time positioning and mapping underground,thereby improving timeliness. Coupled with a penetrating three-dimensional laser radar scanning system bracket,it can measure in dangerous roadways,goafs,and other areas that are difficult for personnel to access,effectively reducing measurement blind spots. To address the issues of unsmooth and hole-ridden void models constructed by existing modeling algorithms,a Poisson surface reconstruction algorithm optimized by the Moving Least Squares (MLS) method is proposed to model the void goaf cloud data. By performing high-order polynomial interpolation around the data points using MLS,and through octree segmentation,vector field calculation,Poisson equation solving,and isosurface extraction,a three-dimensional model of goaf is constructed. The experiment was conducted in a gold mine in Liaoning Province, where data from multiple goaf,roadways,and underground chambers were collected to achieve precise underground space modeling. The experimental results show that the designed system and algorithm can efficiently and accurately achieve three-dimensional modeling of deep and complex goafs,to a certain extent solving the problems of difficult access to goafs,measurement blind spots,and insufficient modeling accuracy in deep and complex goaf detection,providing important technical support for mine goaf management and safe production. 

Key words: deep goaf,Lidar,simultaneous localization and mapping,moving least squares,Poisson surface reconstruction,modeling

中图分类号: