欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2025, Vol. 54 ›› Issue (9): 272-278.

• 地质与测量 • 上一篇    下一篇

适用于矿山遥感图像增强的改进对抗生成网络算法

贾亚娟1   戴二壮1   王咏宁2    

  1. 1. 河南职业技术学院现代信息技术学院,河南 郑州 450000;2. 青海民族大学智能科学与工程学院,青海 西宁 810007
  • 出版日期:2025-09-15 发布日期:2025-10-10
  • 通讯作者: 王咏宁(1971—),男,副教授,硕士。
  • 作者简介:贾亚娟(1990—),女,讲师,硕士。
  • 基金资助:
    2024 年河南省科技厅科技攻关项目(编号:242102210130)。 

Improved Generative Adversarial Network Algorithm for Mine Remote Sensing Image Enhancement 

JIA Yajuan 1   DAI Erzhuang 1   WANG Yongning 2    

  1. 1. College of Modern Information Technology,Henan Polytechnic,Zhengzhou 450000,China; 2. School of Intelligence Science and Engineering,Qinghai Minzu University,Xining 810007,China
  • Online:2025-09-15 Published:2025-10-10

摘要: 高分辨率遥感图像对于地质勘探、资源评估以及矿山安全管理具有重要意义。 采用生成对抗网络 (Generative Adversarial Networks,GAN)对矿山遥感图像进行单幅超分辨率重建,有助于提升图像质量、丰富图像细节。 然而,该方法在实际应用中仍存在训练过程不稳定、生成图像细节与真实地物存在差异,以及容易产生伪影等问题。 为此,提出了一种基于改进注意力机制的 GAN 矿山遥感图像增强算法。 生成器融合了金字塔拆分注意力模块(Pyramid Split Attention,PSA)与稠密残差块(Residual Dense Block,RDB),显著增强了特征提取能力。 金字塔拆分注意力模 块能够有效捕捉多尺度的图像特征,提升了模型对细节的敏感度;稠密残差块则通过密集连接方式,促进信息在网络 中的充分流动,进一步提升特征表示能力。 判别器方面,采用了谱归一化( Spectral Normalization,SN)技术代替传统的 批归一化层(Bath Normalization,BN),以增强对矿山遥感图像细节的学习能力,减少判别器对生成图像细节的忽视。 此外,基于带梯度惩罚的 Wasserstein 生成对抗网络(Wasserstein Generative Adversarial Network with Gradient Penalty, WGAN-GP)理论,优化了对抗损失函数,通过引入梯度惩罚项,稳定了训练过程,加快了模型收敛速度。 试验结果显 示:所提算法在细节纹理丰富性和伪影减少方面优于原始 GAN 算法,处理后遥感图像峰值信噪比( Peak Signal-toNoise Ratio,PSNR)提升了 0. 536~ 1. 897 dB,结构相似度(Structural Similarity,SSIM)提升了 0. 019~ 0. 089。 

关键词: 矿山遥感图像  生成对抗网络  注意力机制  超分辨率 

Abstract: High-resolution remote sensing images are of great significance for geological exploration,resource assessment, and mine safety management. Using Generative Adversarial Networks (GAN) for single-image super-resolution reconstruction of mine remote sensing images can improve image quality and enrich image details. However,this method still has problems such as unstable training process,differences between generated image details and real ground objects,and the tendency to produce artifacts in practical applications. Therefore,an improved attention mechanism-based GAN algorithm for enhancing mine remote sensing images is proposed. The generator integrates the Pyramid Split Attention (PSA) module and Residual Dense Block (RDB),significantly enhancing the feature extraction capability. The PSA module can effectively capture multi-scale image features and improve the model′s sensitivity to details;the RDB promotes the full flow of information in the network through dense connections, further enhancing the feature representation ability. For the discriminator, Spectral Normalization ( SN) technology is adopted instead of the traditional BN (Bath Bath Normalization) layer to enhance the learning ability of mine remote sensing image details and reduce the discriminator′s neglect of generated image details. Additionally,based on the theory of Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP),the adversarial loss function is optimized by introducing a gradient penalty term,stabilizing the training process and accelerating the model′s convergence speed. Experimental results show that the proposed algorithm outperforms the original GAN algorithm in terms of detail texture richness and artifact reduction. The Peak Signal-to-Noise Ratio (PSNR) of the processed remote sensing images is increased by 0. 536 to 1. 897 dB,and the Structural Similarity (SSIM) is increased by 0. 019 to 0. 089. 

Key words: mine remote sensing image,generative adversarial network,attention mechanism,super-resolution

中图分类号: