欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2025, Vol. 55 ›› Issue (8): 129-136.

• 机电与自动化 • 上一篇    下一篇

采动变形适应的无人机空间域滤波算法研究

沈润生1   刘  伟2   王  峰1   陈万里1   张景焘1   时大峰1   王红波1   程  贺1   王一哲3   

  1. 1. 河南神火煤电股份有限公司薛湖煤矿,河南 永城 476600;2. 鄂尔多斯市营盘壕煤炭有限公司,内蒙古 鄂尔多斯 017300; 3. 中国矿业大学环境与测绘学院,江苏 徐州 221116
  • 出版日期:2025-09-15 发布日期:2025-09-16
  • 作者简介:沈润生(1977—),男,总工程师,高级工程师。
  • 基金资助:
    国家自然科学基金联合基金重点项目(编号:U21A20109)。 

Research on Spatial Domain Filtering Algorithm of UAV Adapted to Mining Deformation 

SHEN Runsheng 1   LIU Wei 2   WANG Feng 1   CHEN Wanli 1   ZHANG Jingtao 1   SHI Dafeng 1   WANG Hongbo 1   CHENG He 1   WANG Yizhe 3    

  1. 1. Xuehu Coal Mine,Henan Sunho Group Co. ,Ltd. ,Yongchen 476600,China; 2. Yingpanhao of Ordos City Coal Co. ,Ltd. ,Ordos 017300,China; 3. School of Environment and Spatial Informatics,China University of Mining and Technology,Xuzhou 221116,China
  • Online:2025-09-15 Published:2025-09-16

摘要: 无人机摄影测量技术在开采沉陷监测领域已得到广泛应用,然而现有方法在沉陷监测精度方面仍难以 满足高标准要求。 针对无人机矿区地表沉陷监测精度提升的迫切需求,提出了一种基于采动变形适应的无人机点云 空间域滤波算法。 该算法通过深度融合开采沉陷变形机理与影像处理技术,有效抑制了无人机摄影测量中 DEM 差 值法的随机误差,构建了符合沉陷区采动变形特征的点云空间域滤波方法。 研究通过模拟试验场测试和实际矿区工 程应用 2 个层面验证了该算法的可行性与精度提升效果。 试验结果表明:在模拟试验场环境下,采用本算法后无人机 沉陷监测的中误差较传统 DEM 差值法降低了 50%以上;在实际工程应用中,测量精度较常规方法提升了 38%以上, 工程案例中的沉陷监测中误差控制在 12 mm 以内。 该方法显著提高了无人机沉陷监测的精度水平,为矿区无人机变 形监测的工程应用提供了可靠的技术支持。 

关键词: 无人机摄影测量  沉陷监测  采动变形适应  空间域  精度提升 

Abstract: UAV photogrammetry technology has been widely used in the field of mining subsidence monitoring. However, the existing methods are still difficult to meet the high standard requirements in terms of subsidence monitoring accuracy. Aiming at the urgent need to improve the accuracy of surface subsidence monitoring in UAV mining area,a spatial domain filtering algorithm of UAV point cloud based on mining deformation adaptation is proposed. Through deep fusion of mining subsidence deformation mechanism and image processing technology,the algorithm effectively suppresses the random error of DEM difference method in UAV photogrammetry,and constructs a point cloud spatial domain filtering method that conforms to the mining deformation characteristics of subsidence area. The feasibility and accuracy improvement effect of the algorithm are verified by simulation test field test and actual mining area engineering application. The experimental results show that the mean square error of UAV subsidence monitoring is reduced by more than 50% compared with the traditional DEM difference method in the simulated test field environment. In practical engineering applications,the measurement accuracy is improved by more than 38% compared with the conventional method,and the error of subsidence monitoring in engineering cases is controlled within 12 mm. This method significantly improves the accuracy of UAV subsidence monitoring,and provides reliable technical support for the engineering application of UAV deformation monitoring in mining areas. 

Key words: UAV photogrammetry,subsidence monitoring,adaptation to mining deformation,spatial domain,precision improvement 

中图分类号: