欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2019, Vol. 48 ›› Issue (07): 65-69.

• 采矿工程 • 上一篇    下一篇

矿山预裂爆破效果预测的BP神经网络法

齐留洋1,王德胜1,刘占全2,崔凤2,徐晓东2,郭建新2   

  1. 1. 北京科技大学土木与资源工程学院,北京 100083;2. 包钢钢联巴润矿业分公司,内蒙古 包头 014080
  • 出版日期:2019-07-15 发布日期:2019-09-17

Prediction of Pre-split Blasting Effect Based on BP Neural Network

Qi Liuyang1,Wang Desheng1,Liu Zhanquan2,Cui Feng2,Xu Xiaodong2,Guo Jianxin2   

  1. 1. Civil and Resource Engineering School,University of Science and Technology Beijing,Beijing 100083,China;2. Barun Mining branch, Baotou Steel Union Co.,Ltd.,Baotou 014080,China
  • Online:2019-07-15 Published:2019-09-17

摘要: 为简化矿山预裂爆破效果预测环节、提高预测精准度,针对传统预裂爆破效果评价注重预裂坡面成型的不足,考虑到露天矿山边坡时常受到爆破破岩振动等动态荷载影响的特点,结合BP神经网络,提出了既考虑坡面成型标准又顾及爆破振动对边坡影响的矿山预裂效果预测方法。将单孔装药量、平均孔深、孔距、振动速度峰值(水平、垂直)、振动主频(水平、垂直)、爆心距等参数作为神经网络输入参数,将预裂坡面的平均振动速度、半孔率、不平整度、裂隙系数等参数作为神经网络输出参数。基于24次临近边坡的爆破技术数据建立了矿山预裂爆破效果的BP神经网络预测模型。3次现场爆破预测试验表明:通过神经网络内部的自组织结构,将岩石性质、工程地质条件等与控制预裂爆破效果有关的因素进行简化,可将平均振动速度的预测相对误差控制在7%左右,将半孔率、不平整度、裂隙系数的预测相对误差控制在3%左右,对于提高爆破预裂效果的预测精度有一定的参考价值。

关键词: 露天开采, 预裂爆破, 效果预测, BP神经网络, 预测精度

Abstract: In order to simplify the prediction process of mine pre-split blasting effect and improve the accuracy of prediction,in view of the traditional effect of pre-split blasting,which focuses on the defects of pre-split slope formation,considering that the slope of open-pit mine is often affected by the dynamic load such as blasting rock vibration,a neural network prediction method of mine pre-splitting effect based on considering both the slope forming standard and the impact of blasting vibration on slope is proposed.The parameters such as single hole charge,average hole depth,hole spacing,peak vibration velocity (horizontal,vertical),main vibration frequency (horizontal,vertical),blasting distance and so on are used as input parameters of neural network.Parameters such as average vibration speed,half-hole rate,roughness and fracture coefficient are taken as the output parameters of the neural network.An prediction method of mine pre-splitting blasting effect is established based on 24 blasting technical data of adjacent slope.3 on-site blasting prediction test results show that the rock properties,engineering geological conditions an other factors related to the control of pre-splitting blasting effect are simplified and integrated into the neural network by its self-organizing structure.Therefore,the relative error of the average vibration velocity can be controlled at about 7% by the trained neural network using this data type,and the relative error of the half-porosity,roughness and fracture coefficient can be controlled at about 3%.

Key words: Open-pit mining, Pre-splitting blasting, Effect prediction, BP neural network, Prediction accuracy