金属矿山 ›› 2022, Vol. 51 ›› Issue (11): 193-197.
郑海青1 赵越磊1 宗广昌1 孙晓云1 靳强2
ZHENG Haiqing1 ZHAO Yuelei1 ZONG Guangchang1 SUN Xiaoyun1 JIN Qiang2 #br#
摘要: 露天矿边坡的稳定性直接影响到矿山的安全生产,边坡位移监测数据是表征边坡变形发展过程的重要参量,通过对监测数据进行分析研究,有助于实现滑坡预警。以河北金隅鼎鑫水泥有限公司某开采中的矿山边坡为例,基于监测点采集的边坡位移数据,建立了基于卷积—长短期记忆网络(Conv-LSTM)的多因素边坡位移预测模型。利用长短期记忆网络(Long Short-term Memory,LSTM)提取位移时间序列中的时序信息,通过卷积层提取位移序列中隐藏的深层特征。针对卷积层对于数据之间内部特征提取不充分的问题,引入自注意力机制(Self-attention Mechanism)充分提取边坡位移数据之间的关系特征。试验结果表明:融合自注意力机制的Conv-LSTM边坡位移预测模型的预测准确率较高,与原始位移序列的相关性较好,能更真实地反映边坡变形规律。