欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2023, Vol. 52 ›› Issue (05): 221-227.

• “矿业青年科学家”专题 • 上一篇    下一篇

基于粒子群与模拟退火算法的改进矿井克里金定位方法

胡青松1,2,3 梁天河1,2,3 李世银1,2,3 孙彦景1,2,3
  

  1. 1. 中国矿业大学地下空间智能控制教育部工程研究中心,江苏 徐州 221116;2. 中国矿业大学信息与控制工程学院,江苏 徐州 221116;3. 中国矿业大学徐州市智能安全与应急协同工程研究中心,江苏 徐州 221116
  • 出版日期:2023-05-15 发布日期:2023-06-15
  • 基金资助:
    国家自然科学基金项目(编号:51874299);中国矿业大学“双一流”建设提升自主创新能力项目(编号:2022ZZCX01K01);山东省重大科技创新工程项目(编号:2019JZZY020505);中国矿业大学“工业物联网与应急协同”创新团队资助计划项目(编号:2020ZY002)。

Improved Kriging Location Method Based on Particle Swarm Optimization and Simulated Annealing Algorithms

HU Qingsong1,2,3 LIANG Tianhe1,2,3 LI Shiyin1,2,3 SUN Yanjing1,2,3 #br#   

  1. 1. Engineering Research Center of Intelligent Control for Underground Space,Ministry of Education,China University of Mining and Technology,Xuzhou 221116,China;2. School of Information and Control Engineering,China University of Mining and Technology,Xuzhou 221116,China;3. Xuzhou Engineering Research Center of Intelligent Industry Safety and Emergency Collaboration,China University of Mining and Technology,Xuzhou 221116,China
  • Online:2023-05-15 Published:2023-06-15

摘要: 位置信息对于矿井作业中的人员管理和灾后救援至关重要,指纹定位可显著提高矿井定位精度,但费 时费力的指纹库构建过程阻碍了其大规模应用。 为此,提出了一种基于粒子群与模拟退火的克里金插值算法( PSOSA-Kriging),初始阶段只需采集部分指纹采样点的数据,以这些采样点数据为依据,通过克里金模型插值获得全部指 纹数据集,并利用粒子群与模拟退火算法对克里金理论模型进行优化,使得构建出的指纹库更贴合实际矿井环境。 算法利用粒子群收敛速度快的优势,解决了指纹库快速构建难题。 同时,利用模拟退火克服粒子群可能陷入局部最 优的缺陷,使得模型拟合更准确、插值结果更精确。 在上述分析的基础上,通过在矿井环境下采集指纹数据,建立全部 采样数据库、半采样与插值混合数据库,并选用最近邻算法( KNN)进行了定位验证。 结果表明:POS-SA-Kriging 算法 不但大幅降低了指纹构建工作量,而且显著提高了定位精度,实现了指纹库构建速度与目标定位精度的联合优化。

关键词: 矿井定位, 指纹定位, 克里金插值, 粒子群, 模拟退火

Abstract: Location information is very important for personnel management and post-disaster rescue in mine operation. Fingerprint location can significantly improve the accuracy of mine location,but the time-consuming and laborious process of fingerprint database construction hinders its large-scale application. Therefore,a Kriging interpolation algorithm (PSO-SA-Kriging) based on particle swarm optimization and simulated annealing was proposed. Only partial data of fingerprint sampling points were collected in the initial stage,and all fingerprint data sets were obtained by Kriging model interpolation based on the data of these sampling points,and the Kriging theoretical model was optimized by particle swarm optimization and simulated annealing algorithms. The constructed fingerprint database is more suitable for the actual mine environment. The algorithm takes advantage of the particle swarm convergence speed to solve the problem of rapid construction of fingerprint database. At the same time,simulated annealing is used to overcome the defect that particle swarm may fall into local optimal,which makes model fitting more accurate and interpolation results more accurate. Based on the above analysis results,by collecting fingerprint data in the mine environment,a total sampling database,a mixed database of half sampling and interpolation are established,and the nearest neighbor algorithm (KNN) is used to verify the proposed method. The results show that POS-SA-Kriging algorithm not only greatly reduces the fingerprint construction workload,but also significantly improves the location accuracy,realizing the joint optimization of the fingerprint database construction speed and target location accuracy.